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Abstract. The aim of blind source separation (BSS) is to transform a
mixed random vector such that the original sources are recovered. If the
sources are assumed to be statistically independent, independent compo-
nent analysis (ICA) can be applied to perform BSS. An important aspect
of successfully analysing data with BSS is to know the indeterminacies of
the problem, that is how the separating model is related to the original
mixing model. In the case of linear ICA-based BSS it is well known that
the mixing matrix can be found except for permutation and scaling [3],
but for more general settings not many results exist. In this work we
only consider random variables with bounded densities. We will shortly
describe the bounded BSS problem for linear mixtures. Then, based on
[1], we generalize these ideas to the postnonlinear mixing model with
analytic nonlinearities and calculate its indeterminacies.

1 Introduction

Independent component analysis (ICA) finds statistically independent data
within a given random vector. It is often applied to blind source separation
(BSS), where it is furthermore assumed that the given vector has been mixed
using a fixed set of independent sources. Good textbook-level introductions to
ICA are given in [4] and [2]. In this work, we will analyze separability of linear
and postnonlinear [5] mixtures. The postnonlinear model corresponds to an
often occurring real situation, when the mixture is in principle linear, but the
sensors introduce an additional nonlinearity during the recording. We refer to
[5] for simulations and applications thereof. Here, we additionally assume that
the source signals have bounded range. Section 2 gives a result about homoge-
neous functions, and section 3 covers the postnonlinear separability problem.

2 Basics

For m, n ∈ N let Mat(m×n) be the R−vectorspace of real m×n matrices, and
Gl(n) := {W ∈ Mat(n × n) | det(W) �= 0} be the general linear group of R

n.
An invertible matrix L ∈ Gl(n) is said to be a scaling matrix, if it is diagonal.
We say two matrices B,C ∈ Mat(m × n) are equivalent, B ∼ C, if C can
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be written as C = BPL with an scaling matrix L ∈ Gl(n) and an invertible
matrix with unit vectors in each row (permutation matrix) P ∈ Gl(n).

Denote C1(U) and Cω(U), U ⊂ R
n the set of all continuously differentiable

respectively analytic functions U → R. If we write f ≡ g, we mean that
f(x) = g(x) for all x ∈ U .

Definition 1. Given a function f : U → R assume there exist a, b ∈ R such
that not both are in {−1, 0, 1} and f(ax) = bf(x) for all x ∈ U with ax ∈ U .
Then f is said to be (a, b)-homogeneous or simply homogeneous.

This following lemma is from [1] with the correction of taking into account
the cases a, b ∈ {−1, 0, 1} in which homogeneity does not induce such strong re-
sults. This lemma can be generalized to C1-functions, so the strong assumption
of analyticity is not needed, but shortens the proof.

Lemma 2. Let f : U → R, be an analytic function that is (a, b)-homogeneous
on [0, ε) with ε > 0. Then there exist c ∈ R, n ∈ N0 (possibly 0) such that
f(x) = cxn for all x ∈ U .

Proof. If a is in {−1, 0, 1} or b = 0 then obviously f ≡ 0. If b = −1 then
f ≡ 0, since a /∈ {−1, 0, 1}, f(a2x) = f(x) and f continuous, f is constant, but
f(ax) = −f(x) implies that f ≡ 0. In the case that b = 1 again f is constant
since f(ax) = f(x) and a0 = 1 = b.

By m-times differentiating the homogeneity equation we get bf (m)(x) =
amf (m)(ax), where f (m) denotes the m-th derivative of f . Evaluating this
at 0 yields bf (m)(0) = amf (m)(0). Since f is assumed to be analytic, f is
determined uniquely by its derivatives at 0. Now either there exists an n ≥ 0
with b = an, then f(x) = cxn or else f ≡ 0.

Definition 3. We call a random vector X with density pX bounded, if its
density pX is bounded. Denote supp pX := {x|pX(x) �= 0} the support of pX

i.e. the closure of the non-zero points of pX.

Therefore it makes sense to introduce the following notion: An independent
random vector X is said to be fully bounded, if pXi

(x) �= 0 for all x ∈ (ai, bi).
And in this case we get supp pX = [a1, b1] × . . . × [an, bn].

In the following we will always assume to have fully bounded densities, so
S is assumed to have a fully bounded density pS : R

n → R. In the case of
the linear instantaneous Blind Source Separation (BSS) problem the following
separability result is well known and can be derived from a more general ver-
sion of this theorem for non-bounded Comon [3]. But in the context of fully
bounded random vectors, this follows already from the fact that in this case
independence is equivalent to having support within a cube with sides parallel
to the coordinate planes, and only matrices equivalent to the identity leave this
property invariant:

Theorem 4 (Separability of bounded linear BSS). Let A ∈ Gl(n) and S
a fully bounded independent random vector. If AS is again independent, then
A is equivalent to the identity.
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This theorem indeed proves separability of the linear ICA model as above,
because if X = AS and W is a demixing matrix such that WX is independent,
then WA ∼ I, so W−1 ∼ A as desired. As the model is invertible and the
indeterminacies are trivial, identifiability and uniqueness follow directly.

3 Separability of postnonlinear BSS

Definition 5. A function f : R
n → R

n is called diagonal or component-wise
if each component fi(x) of f(x) depends only on the variable xi.

In this case we often omit the other variables and write f(x1, . . . , xn) =(
f1(x1), . . . , fn(xn)

)
.

Consider now the postnonlinear Blind Source Separation model:

X = f(AS)

where again S is an independent random vector, A ∈ Gl(n) and f is a diag-
onal nonlinearity. We assume the components fi of f to be injective analytic
functions with non-vanishing derivative. Then also f−1

i is analytic.

Definition 6. Let A ∈ Gl(n) be an invertible matrix. Then A is said to be
mixing if A has at least two nonzero entries in each row. And A = (aij)i,j=1...n

is said to be absolutely degenerate if there are two columns l �= m such that
a2

il = λa2
im for a λ �= 0 i.e. the normalized columns differ only by the sign of

the entries.

Postnonlinear BSS is a generalization of linear BSS, so the indeterminacies
of postnonlinear ICA contain at least the indeterminacies of linear BSS: A can
only be reconstructed up to scaling and permutation. Here of course additional
indeterminacies come into play because of translation: fi can only be recovered
up to a constant. Also, if L ∈ Gl(n) is a scaling matrix, then f(AS) = (f ◦
L)

(
(L−1A)S

)
, so f and A can interchange scaling factors in each component.

Another obvious indeterminacy could occur if A is not general enough: If for
example A = I, then f(S) is already again independent, because independence
is invariant under component-wise nonlinear transformation; so f cannot be
found using this method.

A not so obvious indeterminacy occurs if A is absolutely degenerate. Then
only the matrix A but not the nonlinearities can be recovered from looking
at the edges of the support of the fully-bounded random vector. For example
consider the case n = 2, A =

(
1 1
2−2

)
and the analytic function f(x1, x2) =(

x1 + 1
2π sin(πx1), x2 + 1

π sin(π x2
2 )

)
. Then f ◦A maps [0, 1]2 onto [0, 1]2 as can

be shown by calculation, see for example figure 1. But f is not affine linear.
Nonetheless this is no indeterminacy of the model itself, since A−1f(AS) is
obviously not independent.

If we however assume that A is mixing and not absolutely degenerate, then
we will show for all fully-bounded sources S that except for scaling interchange
between f and A no more indeterminacies as in the affine linear case exist. If
f is only assumed to be C1, then additional indeterminacies come into play.
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Figure 1: Example for a postnonlinear transformation using a absolutely degenerate
Matrix A and in [0, 1]2 uniform sources S.

Theorem 7 (Separability of bounded postnonlinear BSS). Let A,W ∈
Gl(n) and one of them mixing and not absolutely degenerate, h : R

n → R
n be

a diagonal injective C∞-function such that h′
i �= 0 and let S be a fully-bounded

independent random vector. If W
(
h(AS)

)
is independent, then there exists

a scaling L ∈ Gl(n) and v ∈ R
n with LA ∼ W−1 and h(x) = Lx + v for

x ∈ suppS.

If f ◦ A is the mixing model, W ◦ g is the separating model. Putting the
two together we get the above mixing-separating model. Note that h can be
determined only on the cross containing A suppS because S is bounded. For
ease of notation we only fix h on A suppS. As usual, because the model was
assumed to be invertible, identifiability and uniqueness of the model follow
from the separability.

Definition 8. A subset P ⊂ R
n is called parallelepipeds, if it is the linear

image of a square, that is

P = A([a1, b1] × . . . × [an, bn])

for ai < bi,i = 1, . . . , n and A ∈ Gl(n). A parallelepipeds P is said to be tilted,
if A is mixing and no 2 × 2-minor is absolutely degenerate.

Let i �= j ∈ {1, . . . , n} and c ∈ {a1, b1} × . . . × {an, bn}, then

A
({c1} × . . . × [ai, bi] × . . . × [aj , bj ] × . . . × {cn}

)

is called a 2-face of P and A(c) is called a corner of P .
If n = 2 the parallelepipeds are called parallelograms.

Lemma 9. Let f1, . . . , fn ∈ Cω(R) be n analytic injective functions with f ′
i �= 0,

and let f := f1×. . .×fn be the induced injective mapping on R
n. Let P,Q ⊂ R

n

be two parallelepipeds, one of them tilted. If f(P ) = Q (or equivalently for the
boundaries f(∂P ) = ∂Q), then f |P is affine linear diagonal.

In the proof we see that the requirement for P or Q being tilted is too
strong. It would suffice that enough 2-minors are not absolutely degenerate.
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Nevertheless the set of mixing matrices which having no absolutely degenerate
2 × 2-minors is dense in Gl(n).

We can easily reduce the prove of this lemma to the case where n = 2 and
the next lemma yields the desired result.

Lemma 10. Let f1, f2 ∈ Cω(R) be two analytic injective functions on R, and
let f := f1 × f2 be the induced injective mapping on R

2. Let P,Q ⊂ R
2 be two

parallelograms such that one of them is mixed. If f(P ) = Q (or equivalently for
the boundaries f(∂P ) = ∂Q), then f is affine linear diagonal.

Note that the tiltedness is essential, for example let P =
(
1 2
1 0

)
[0, 1]2 and f1

such that

f1(x) =
{

3
2x for x < 1

3
2x − 1 for x > 2

and f2(x) := x. Then Q is a parallelogram and its corners are (0, 0), (3
2 , 1),

(0, 2), ( 7
2 , 1) which is not a scaled version of P . We will prove this lemma

together with the next two lemma. Also note that contrary to [1] an addi-
tional assumption (absolutely-degeneracy) occurs — this is in fact a necessary
condition as shown in figure 1 above.

Proof of lemma 10. Obviously images of non-tilted parallelograms under diag-
onal mappings are again non-tilted. f is invertible, so we can assume that both
P and Q are tilted. Without loss of generality using the scaling and translation
invariance of our problem, we may assume that

∂P =
(

1 1
a1 a2

)
∂([0, 1] × [0, c]), ∂Q =

(
1 1
b1 b2

)
∂([0, 1] × [0, d]),

with ai, bi ∈ R \ {0} and a2
1 �= a2

2 and b2
1 �= b2

2 and ca2, db2 > 0 and c ≤ 1, and

f(0) = 0, f(1, a1) = (1, b1), f(c, ca2) = (d, db2)

(i.e. the vertices of P are mapped onto the vertices of Q in the specified order).
Note that the vertices of P have to be mapped onto vertices of Q because f
is at continuously differentiable. Since the fi are monotonously we also have
d ≤ 1 and that a1 < 0 implies b1 < 0.

It follows that f maps the four separate edges of ∂P onto the correspond-
ing edges of ∂Q: f(t, a1t) =

(
g1(t), b1g1(t)

)
, f(ct, ca2t) =

(
dg2(t), db2g2(t)

)
for t ∈ [0, 1]. Here gi : [0, 1] → [0, 1] is a strongly monotonously increas-
ing parametrization of the respective edge. It follows that g1(t) = f1(t) and
dg2(t) = f1(ct) and therefore f2(a1t) = b1f1(t) and f2(ca2t) = b2f1(ct) for
t ∈ [0, 1]. Therefore we get an equation for both components of f , e.g. for the
second: f2

(
a1
a2

t
)

= b1
b2

f2(t) for t ∈ [0, ca2].
So f2 is

(
a1
a2

, b1
b2

)
-homogeneous with coefficients not in {−1, 0, 1} by assump-

tion; according to lemma 2 f2 and then also f1 are homogeneous polynomials
(everywhere due to analyticity). By assumption f ′

i(0) �= 0, hence the fi are
even linear.

We have used the translation invariance above, so in general f is an affine
linear scaling.
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Proof of lemma 9. Again note that since diagonal maps preserve non-tiltedness
we can assume that P and Q are tilted. Let πij : R

n → R
2 be the projection

onto the i, j-coordinates. Note that for any corner c and i �= j there is a 2-face
Pijc of P containing c such that πij(Pijc) is a parallelogram. In fact since P is
tilted πij(Pijc) is also tilted. Since f is smooth πij

(
f(Pijc)

)
is also a 2-face of

Q and again tilted.
For each corner c of P and i �= j ∈ {0, . . . , n} we can apply lemma 10 to

πij(Pijc) and πij

(
f(Pijc)

)
. Therefore fi and fj are affine linear on πi(Pijc) and

πj(Pijc). Now πi(P ) ⊂ ⋃
cj πi(Pijc) and hence fi affine linear on πi(P ) which

proves that f is affine linear diagonal.

Proof of theorem 7. S is bounded, and W ◦ h ◦ A is continuous, so T :=
W

(
h(AS)

)
is bounded as well. Furthermore, since S is fully bounded, T

is also fully bounded. Then, as seen in section 2, suppS and suppT are rect-
angles with boundaries parallel to the coordinate axes. Hence P := A(suppS)
and Q := W−1(suppT) are parallelograms. One of them is tilted because
otherwise A and W−1 would not be mixing.

As W ◦ h ◦ A maps suppS onto suppT, h maps the set A suppS onto
W−1 suppT i.e. h(P ) = Q. Then by lemma 9 h is affine linear diagonal, say
h(x) = Lx + v for x ∈ P with L ∈ Gl(2) scaling and v ∈ R

2.
So W

(
h(AS)

)
= WLAS+Wv is independent, and therefore also WLAS.

By theorem 4 WLA ∼ I, so there exists a scaling L′ and a permutation P′

with WLA = L′P′ as had to be shown.

4 Conclusion

We have presented a new separability result for postnonlinear bounded mix-
tures that is based on the analysis of the borders of the mixture density. We
hereby formalize and extend ideas already presented in [1]. We introduce the
notion of absolutely degenerate mixing matrices. Using this we identify the
restrictions of separability and also of algorithms that only use border analysis
for postnonlinearity detection. In future works we will show how to relax the
condition of analytic postnonlinearities to only C1-functions.
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