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Abstract. We study a class of artificial neural networks in which a
physics-like conservation law upon the activity of connected neurons is
imposed at each time. We postulate that the modification of the net-
work activities may be interpreted as a learning capability if a judicious
conservation law is chosen. We illustrate our claim by modeling a rat
behavior in a labyrinth: the exploration of the labyrinth permits to cre-
ate connections between neurons (latent learning), whereas the discovery
of food induces a one step backpropagation process over the activities
(reinforcement learning). We give theoretical results about our learning
algorithm CbL and show it is intrinsically faster than Q-Learning.

1 Introduction.

1.1 Why to utilize a conservation law ?

Living entities (from cells to humans) have the ability to adapt themselves to
an environment they do not completely know a priori. Astonishingly, the a

priori uncertainty is compatible with the a posteriori robustness of the entities
behavior in their environment: it is highly predictable that a baby will learn
successfully how to walk and speak his mother tongue.

This dilemma is the core issue in building adaptive and robust artifact be-
haviors. Learning methods cope with the adaptation of the artifact. But what
”highly predictable” means in a modeling point of view ? It is often associated
to convergence properties of a method to an optimal or suboptimal behavior.
However, if we take the example of reinforcement learning (RL) which theoret-
ically owns this property [7], experiments in the real world have stressed some
practical limitations, mainly because the Markovian hypothesis (which ensures
the convergence to an optimal behavior) is invalid in a lot of real applications
[5]. This inadequacy between the theoretical hypothesis and the real world
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may lead to chaotic or quasi-random behaviors after the learning stage [3],[2].

We think that algorithms like RL may fail in practice due to nature of
the object the predictivity must be applied to: (statistical) goodness of the
learnt behavior, whatever the environment is. If we apply a conversation law
on the interaction between an artifact and its environment, we may be able to
(a) deduce theoretically the set of possible evolutions of the artifact through
its interaction to the set of all possible environments; (b) divide this set into
two sub-sets: interesting evolutions in terms of the resulting behavior and
uninteresting evolutions; (c) specify the set of environments that are likely
to lead to interesting behaviors (we shall say learnt behaviors); (d) compare
this theoretical set to the set of real environments. The artifact will learn the
behavior in reality (i.e. follow an interesting evolution) if and only if the two
sets of environments are ”compatible”.

1.2 The case study: facts, modeling and notations.

This paper is dedicated to the application of our strategy based on conservation
law to the behavior of a simulated rat in a labyrinth. In this paragraph, we
will specify the structure of our model, looking at the three following facts:
(a) It has been shown that the rat may use a cognitive map for its navigation
[4]. (b) There are also evidences that the rat begins to learn the topology of
an unexplored labyrinth before having any reward: this has been called latent

learning [6]. (c) And, at the moment a rat has discovered food, it is able to
navigate to it from any point of the labyrinth (reinforcement learning).

Our model is comparable to a Q-Learning (QL) model [7]. We suppose
that the artifact has p actions a1, a2, . . . , ap. We consider a set of n states
s1, s2, . . . , sn associated to the firing of place-cells c1, c2, . . . , cn for n locations
covering the labyrinth (fact (a)); the activity of each cell ci is qi. For each cell
ci, we associate a set of p states si,1, si,2, . . . , si,p. A si,j is a transitory state
meaning that cell ci has fired and the execution of action aj has been decided.
The transitory state si,j is supposed to be materialized by a cell ci,j which
activity is qi,j , representing the Q-value for the QL techniques. Two extra
states, namely sp and sf , are supposed to exist: sp is associated to the hit of
an obstacle and sf to the discovery of food. When the rat hits an obstacle, its
state becomes sp; when it discovers food, its states moves to sf . sp is linked to
a cell cp (activity is qp) whereas sf is associated to a cell cf (activity is qf ).

Each cell ci is a priori connected to the p cells ci,1, ci,2, . . . , ci,p. Connections
ti,j,k from a cell ci,j to a cell ck may be created during the artificial rat’s
exploration of the labyrinth to meet fact (b). The set of all connections ti,j,k
starting from a cell ci,j is called Ti,j .

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 537-542



2 Constraint based Learning algorithm.

2.1 Chosen conservation law.

The conservation law has been chosen to permit a comparison between CbL
and RL techniques. It is applied to the activities of connected cells and is very
closed to the minimax algorithm. Its expression relies on the two following
equations:

qi = α

[

max
j∈{1,...,p}

{qi,j}

]

(1)

qi,j = α

[

min
k∈T (i,j)

{qk}

]

(2)

Where α is a scalar in ]0, 1[. If T (i, j) is an empty set, we assume that qi

must be equal to 0. The conservation law implies that equations 1 and 2 must
be fulfilled for every cell ci and every cell ci,j of the network at any time.

2.2 Backpropagation process and decision making.

At the moment the rat is firstly introduced into the labyrinth, we suppose that
no connections ti,j,k exist. Looking at equations 1 and 2, we deduce that initial
activities qi and qi,j must be equal to 0. A connection from ci,j to ck (resp. cp

or cf ) is added if the artifacts moves for the first time from state si,j to state
sk (resp. sp or sf ).

The modification of the activities in the network may occur if: (a) a con-
nection is created; (b) qf or qp are changed. If a connection is created, a Ti,j

grows and the equation associated to ci,j may not be satisfied. Whereas if qf

(resp. qp) changes, the equations associated to all ci,j connected to cf (resp.
cp) may not be fulfilled. If an equation is not fulfilled, the right term remains
unchanged (as it is done in the temporal difference method) whereas the left
term is set to the value of the right term: for equation 1 (resp. equation 2), qi

(resp. qi,j) is modified. These modifications may lead to the unfulfillment of
other equations, which involve the modification of other qi or qi,j , and so on:
this is our backpropagation process.

The decision making process of the artifact is based on a greedy policy:
when the artifact is in state si (ci is firing), we determine a sub-set S =
{aj∗

1
, . . . , aj∗

u

, . . . , aj∗

m

} of a1, . . . , ap: qi,j∗

u

= maxj∈{1,...,p}{qi,j}. In the case
S is not reduced to one element (which often happens), one action from S is
chosen randomly. This permits the exploration of the labyrinth.

2.3 Theoretical results.

The use of a conservation law leads to a one step backpropagation process. If
the conservation law is not chosen carefully, this process may turn into a loop
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and never ends (oscillation of activities). It is fundamental to prove that this
process is stable: this is the case for CbL.

The interesting configurations of the network activities (i.e. the artifact
learns a good navigation behavior) are obtained if the interaction with the
environment leads to the creation of one connection (at most) from any ci,j .
If this condition is not violated, the following facts may be proved (see [1] for
details):

• As soon as the artifact has found food, it is able to return to it from every
explored place (due to the one step backpropagation process).

• Moreover, if the labyrinth do not change and the qf and qp values are
constant, the value of the activities converge in a finite window time (as
soon as food is discovered).

• The navigation of the artificat through the explored parts of the labyrinth
is then optimal; but it may not be optimal considering the whole labyrinth
(with its unexplored parts): see fig. (b).

• CbL is intrinsically faster than QL (with eligibility trace)(see fig. (a)).

• The behavior of the artifact may be immediately changed by the way of
qf and qp (see fig. (c) to (f)).

3 Experiments.

This section aims to show some experimental details that illustrate the theo-
retical results given in the former section.

3.1 Wandering and looking for food.

The model of the labyrinth is a 10 × 10 grid in which the artifact may use
four actions (left,right,up,down). Each unit of the labyrinth is associated to a
cell ci. The ”wandering” and ”looking for food” behaviors are generated by
considering a relation between the “energy” of the rat and qf : E + qf = 0. If
we suppose that E diminishes at each move and is set to 1 if food is reached,
the two behaviors alternate. Figure (f) shows that as soon as the artifacts
finds food for the first time (step 120), qf (hence E) oscillates regularly: the
rat is able to go for food as soon as it is hungry (E < 0). Figure (d) shows the
equipotentials of activities in the network in this situation: an attraction basin
is built to guide the rat to the food place. The shape of this curve depends
deeply on the exploration of the labyrinth (see fig. (c)): the second place of
food has not been explored yet so that only one basin exists. The exploration
of the labyrinth may be continuated, even if a first place of food has been
discovered, because this place is avoided (as an obstacle) until E < 0 (fig. (e)).
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3.2 Comparison between CbL and Q-Learning.

We evaluate the mean performance of CbL and Q-Learning (with eligibility
trace) over 1000 learning phases. Each learning phase is composed of 1000
trials. Each trial ends if food (qf = 1), obstacle (qp = −1) is encountered or if
5000 learning steps have been performed. The artifact begins a trial in a unit
chosen randomly.

The convergence is evaluated by looking at the cumulative absolute differ-
ence of Q-values for QL, and at the cumulative number of modified activities
for CbL. The curves of graph (a) shows the mean convergence for QL and CbL
over the 1000 learning phases, from learning step 1 to 5000. CbL curve starts
to diminish long before QL, whereas the slope of the two diminishing curves
are comparable. This difference is due to the one step backpropagation process
of CbL. However, the navigation behavior for CbL may not be optimal: figure
(b) compares the mean number of steps needed to go for food and we can see
that QL is better than CbL. This disadvantage disappears in the case the whole
labyrinth had been explored before finding food for the first time.
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Figure 1: Experimental results.
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4 Conclusion.

In this paper, we have focused on a class of artificial neural networks in which
a constraint has been put on the activity of connected neurons; this constraint
is comparable to a physics-like conservation law. This implies that the mod-
ification of the neural activities is caused by a change in the topology of the
network (add or delete a connection between two neurons) or by a change in
the activity of specific neurons associated with a reward: this induces a one

step backpropagation process. Two main results may be stressed.
First, from a theoretical point of view, the convergence of a learning algo-
rithm based on a conservation law relies mostly on the ability to prove that
the backpropagation process is stable (i.e. do not oscillate). Second, our learn-
ing algorithm (CbL) has been compared favorably to a classical Q-Learning
technique: (a) the learning performances are much faster; (b) CbL is truly
incremental; (c) CbL has no internal parameter. The learning process is fast
because the modification of the activity of a neuron is propagated to the other
neurons in one step.
But there exists a strong limitation on CbL: noisy environments are likely to
lead to uninteresting configurations (even if CbL has been proved to converge
in all situations). It is due to the deterministic nature of the chosen conserva-
tion law. To overcome this issue, we are working on conservation laws that are
not applied on real values but on densities of probability.
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