
Robust overcomplete matrix recovery for sparse

sources using a generalized Hough transform

Fabian J. Theis, Pando Georgiev and Andrzej Cichocki
Brain Science Institute, RIKEN, Lab. for Adv. Brain Signal Processing

2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan

Abstract. We propose an algorithm for recovering the matrix A in
X = AS where X is a random vector of lower dimension than S. S is
assumed to be sparse in the sense that S has less nonzero elements than
the dimension of X at any given time instant. In contrast to previous
approaches, the computational time of the presented algorithm is linear
in the sample number and independent of source dimension, and the
algorithm is robust against noise. Experiments confirm these theoretical
results.

1 Introduction

A new algorithm for decomposing a data set X in X = AS is proposed where
the sources S are assume to be sparse (Sparse Component Analysis, SCA)
[2]. We use the Hough transform to detect hyperplanes in X, which leads
to matrix and source identification. The Hough transform has been used in
a somewhat ad hoc way in the field of independent component analysis by
[4] for identifying two dimensional sources in the mixture plot, and in [5],
again in the overcomplete case but with mixture dimension two as a direct
application to the mixtures (without additional restrictions), which can be
shown to be problematic theoretically. In the literature, there are quite a few
more overcomplete BSS and basis estimation algorithms (for example [6, 7]
and references therein), which also use sparse priors (sources), but in addition
also assume independence of the sources. This allows for less strict sparsity
conditions, but cannot guarantee source identifiability as in our case.

2 Overcomplete SCA

Definition 2.1. A vector v ∈ R
n is said to be k-sparse if v has at least k zero

entries. A random vector S : Ω → R
n is said to be k-sparse if S(ω) is k-sparse

for every event ω ∈ Ω.

The goal of Sparse Component Analysis of level k (k-SCA) is to decompose
a given m-dimensional random vector X into X = AS with a real m×n-matrix
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A and an n-dimensional k-sparse random vector S. S is called the source vector,
X the mixtures and A the mixing matrix. We speak of complete, overcomplete
or undercomplete k-SCA if m = n, m < n or m > n respectively.

In the following without loss of generality we will assume m ≤ n: the
undercomplete case can be reduced to the complete case by projection of X.

Theorem 2.2 (Matrix identifiability). Consider the k-SCA problem for
k := n − m + 1 and assume that every m × m-submatrix of A is invertible.
If S is sufficiently rich then A is uniquely determined by X except for left-
multiplication with permutation and scaling matrices.

This means that we can recover the mixing matrix from the mixtures. Suffi-
ciently rich means that all combinations of non-zeros must occur in sufficiently
many samples [2].

Theorem 2.3 (Source identifiability). Let H be the set of all x ∈ R
m such

that the linear system As = x has a (n−m+1)-sparse solution i.e. one with at
least n − m + 1 zero components. If A fulfills the condition from theorem 2.2,
then there exists a subset H0 ⊂ H with measure zero with respect to H, such
that for every x ∈ H \H0 this system has no other solution with this property.

For proofs of these theorems together with the corresponding algorithms,
we refer to [2].

3 Hough transform

The Hough transform is a well-known method for finding shapes in images,
widely used in the field of image processing [1, 3]. It is robust to noise and
occlusions and is used for extracting lines, circles or other shapes from images.
In addition to these nonlinear extensions, it can also be made more robust to
noise using anti-aliasing techniques.

The mixing matrix A in the case of (n−m+1)-sparse SCA can be recovered
by finding all 1-codimensional subvectorspaces in the mixture data set. The
algorithm presented here uses a generalized version of the Hough transform in
order to determine hyperplanes through 0 as follows:

Vectors x ∈ R
m lying on such a hyperplane H can be described by the

equation n�x = 0, where n is a nonzero vector orthogonal to H. After nor-
malization (i.e. n lies on the (n − 1)-sphere) n is uniquely determined by H
if we additionally require n to lie on one hemisphere. In terms of spherical
coordinates

n =




cos ϕ sin θ1 sin θ2 . . . sin θm−2

sin ϕ sin θ1 sin θ2 . . . sin θm−2

cos θ1 sin θ2 . . . sin θm−2

...
. . .

...
cos θ1 cos θ2 . . . cos θm−2


 (1)
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Figure 1: Illustration of the ’hyperplane detecting’ Hough transform in three di-
mensions: A point (x1, x2, x3) in the data space (left) is mapped onto the curve
{(ϕ, θ)|θ = arctan(x1 cos ϕ + x2 sin ϕ) + π

2
} in the parameter space [0, π)2 (right).

The Hough curves of points belonging to one plane in data space intersect in pre-
cisely one point (ϕ, θ) in the data space — and the data points lie on the plane given
by the normal vector (cos ϕ sin θ, sin ϕ sin θ, cos θ).

with (ϕ, θ1, . . . , θm−2) ∈ [0, 2π)× [0, π)m−2 uniqueness of n can be achieved by
requiring ϕ ∈ [0, π).

Vectors x in the hyperplane given by n are orthogonal to it, so in spherical
coordinates this gives cot θm−2 = −∑m−1

i=1 νi(ϕ, θ1, . . . , θm−3) xi

xm
for x ∈ R

m

with xm �= 0 and

νi :=




cos ϕ
∏m−3

j=1 sin θj i = 1
sin ϕ

∏m−3
j=1 sin θj i = 2∏i−2

j=1 cos θj

∏m−3
j=i−1 sin θj i > 2

With cot(θ + π
2 ) = − tan(θ) we finally get θm−2 = arctan

(∑m−1
i=1 νi

xi

xm

)
+ π

2 .

Note that continuity is achieved if we set θm−2 := 0 for xm = 0. We can then
define the generalized (’hyperplane detecting’) Hough transform as

η : R
m −→ P([0, π)m−1) (2)

x �−→
{

(ϕ, θ1, . . . , θm−2) ∈ [0, π)m−1|θm−2 = arctan(
m−1∑
i=1

νi
xi

xm
) +

π

2

}

where P(U) denotes the set of all subsets of U .
Points lying on the same hyperplane are mapped to surfaces that intersect

in precisely one point in [0, π)m−1. This is demonstrated in the case m = 3 in
figure 1. The hyperplane structures of a data set X̄ = {x(1), . . . ,x(T )} can be
analyzed by finding clusters in η(X̄).
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4 Hough SCA Algorithm

The SCA matrix detection algorithm [2] consists of two steps. In the first
step, d :=

(
n

m−1

)
hyperplanes given by their normalvectors n(1), . . . ,n(d) are

constructed such that the mixture data lies as good as possible in the union of
these hyperplanes. In the second step, mixture matrix columns ai are identified
as generators of the n lines lying at the intersections of

(
n−1
m−2

)
hyperplanes.

We replace the first step by the following Hough SCA algorithm.
The idea is to first plot the Hough curves η(x(t)) corresponding to the

samples x(t) of X in a discretized parameter space (often called accumulator).
Plotting in the accumulator is sometimes denoted as voting for each bin, sim-
ilar to histogram generation. Maxima analysis of the accumulator gives the
hyperplanes in the parameter space.

The Hough SCA algorithm is described in algorithm 1. We see that only the
hyperplane identification step is different from the original hyperplane detection
algorithm [2], the matrix identification is the same.

Algorithm 1: Hough SCA algorithm

Data : Samples x(1), . . . ,x(T ) of the random vector X

Result: Estimated mixing matrix Â

Hyperplane identification.
1 Fix the number β of bins (can be separate for each angle).
2 Initialize the ’accumulator’ array α ∈ R

βm−1
with zeros.

for t ← 1, . . . , T do
for ϕ, θ1, . . . , θm−3 ← 0, π

β , . . . , (β−1)π
β do

3 θm−2 ← arctan(
∑m−1

i=1 νi(ϕ, . . . , θm−3)
xi(t)
xm(t) ) + π

2

4 Increase (’vote for’) the accumulator value of α in bin
corresponding to (ϕ, θ1, . . . , θm−2) by one.

end
end

5 The d :=
(

n
m−1

)
largest local maxima of α correspond to the d

hyperplanes present in the data set.
6 Backtransformation as in equation 1 gives the corresponding normal

vectors n(1), . . . ,n(d) to those hyperplanes.

Matrix identification.
7 Clustering of hyperplanes generated by (m − 1)-tuples in
{n(1), . . . ,n(d)} gives n separate hyperplanes.

8 Their normal vectors are the n columns of the estimated mixing
matrix Â.

β is also called the grid resolution. Similar to histogram-based density
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Figure 2: Example signals.
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Figure 3: A sphered (normalized) scatter plot is shown in order to depict the density
3(a) together with the mixture space after Hough transform (’accumulator’) with 360
discretization steps, where the found maxima are marked with little squares 3(b).

estimation the choice of β can seriously effect the algorithm performance —
if chosen too small possible maxima cannot be resolved, and if chosen too
large, the sensitivity of the algorithm increases and the computational burden
in terms of speed and memory grows considerably.

5 Experiments

In the first experiment we consider the case of 4 sources and 3 mixtures. The
4-dimensional sources as plotted in figure 2(a) are 2-sparse and consist of 1000
samples. Obviously all combinations (i, j), i < j of active sources are present
in the data set — this condition (sufficiently rich sources) is needed in the
matrix recovery step. The sources were mixed using a mixing matrix with
randomly (uniform in [−1, 1]) chosen coefficients to give mixtures as shown in
figure 2(b). The mixture density clearly lies in 6 disjoint hyperplanes, spanned
by pairs (ai,aj), i < j of mixture matrix columns.

In order to detect the planes in the data space, we apply the generalized
Hough transform as explained in section 3. Figure 3(b) shows the Hough image
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with β = 360. Each sample results in a curve, and clearly 6 intersection points
are visible, which correspond to the 6 hyperplanes in question. Maxima analy-
sis retrieves these points (in Hough space) as shown in the same figure. After
transforming these points back into R

3 with the inverse Hough transform, we
get 6 normalized vectors corresponding to the 6 planes. We then recover the 4
matrix columns combinatorially from the plane norm vectors, see algorithm 1
to get the recovered mixing matrix Â. The deviation from the original mixing
matrix in the overcomplete case can be measured by the generalized cross talk-
ing error [6], which here is very low with E(A, Â) = 0.040. Then, the sources
are recovered using the source recovery algorithm from [2] with the approxi-
mated mixing matrix Â. The (normalized) SNRs of the recovered sources with
the original ones, figure 2, are high with 36, 38, 36 and 37 dB respectively.

In a second experiment, we add 1% Gaussian white noise to the above mix-
ture and apply the generalized Hough transform to the mixture data, however
because of the noise we choose a more coarse discretization (180 bins). Curves
in Hough space corresponding to a single plane do not any more intersect in
precisely one point due to the noise; a low-resolution Hough space however
fuses these intersections in one point, so that our simple maxima detection still
achieves good results. We recover the mixing matrix Â′ with generalized cross
talking error is low with E(A, Â′) = 0.12. We get good SNRs of the recovered
sources (average 20 dB), which is quite satisfactory considering the additive
noise and the overcomplete mixture situation.

In a final example, we use again the same mixtures, but replace 80% of
the samples by outliers (drawn from a 4-dimensional normal distribution). We
find that the Hough SCA algorithm is very robust against outliers. This is
confirmed by the recovered mixing matrix Â′′ with excellent generalized cross
talking error of E(A, Â′′) = 0.040. Furthermore, the sparse recovery method
can detect outliers by measuring distance from the hyperplanes, so outlier
rejection is possible.
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