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Abstract. On certain types of multi-touch touchpads, determining
the number of finger stroke is a non-trivial problem. We investigate
the application of several classification algorithms to this problem. Our
experiments are based on a flat prototype of the spherical Touchglobe
touchpad. We demonstrate that with a very short delay after the stroke,
the number of touches can be determined by a Support Vector Machine
with an RBF kernel with an accuracy of about 90% (on a 5-class prob-
lem).

1 Introduction

Tactile interfaces constitute a dynamically developing field in human-computer
interaction research and applications. They are no longer primarily seen as the
means of communication for visually impaired people but rather as a possible
technology for a fast and ergonomic computer interface. Further impetus for
the development of tactile interfaces was given by the emergence of the notion
of “wearable computing” in which touchpads play the key role as an input
device.

The hardware technology underlying the design of touchpads can roughly
be categorized in two classes: the projective sensor matrices and the sensor
arrays. In the former, used in the majority of commercially available single-
touch touchpads, e.g. Synaptics TouchPad�[1], the input is generated by the
sensors corresponding to the directions on the active area. The advantage of the
projective sensor touchpads is their simplicity and the small number of sensors
required (proportional to roughly the square root of the active area). While
adequate for detection of one touch, the projective sensor matrices suffer from
ambiguity arising when multiple touches are made [8]; at certain locations two
touches cannot be distinguished from three touches etc. The ambiguity problem
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can be solved for three fingers by using special disambiguation techniques [2, 7],
or, similarly to computer tomography, by using multiple scanning directions
[9, 13], but no solution is currently known for more than three fingers. The
sensor arrays utilize touch-sensitive sensors allocated throughout the active
area of a touchpad [6, 3, 17]. While the sensor array technology is constantly
improving, with some new commercial products, e.g. by Tactex Controls Inc.
[15] and Fingerworks Inc. [5], available on the market, it increases hardware
complexity and has potentially lower spatial resolution.

In this paper we propose using machine learning technology to alleviate the
ambiguity problem of projective sensor touchpads. In particular, we present the
techniques for learning to classify the number of fingers applied to a touchpad
(one through five; for one hand only). We show that with relatively simple
preprocessing, the classification accuracy of about 98% can be attained on
a single-class classification of the number of touches (for example one touch
against all other number of touches), or about 90% accuracy can be attained
on multi-class classification, i.e. determining how many fingers are pressed at
a single time instance. The proposed methods are online in the sense that they
yield an answer shortly after pressing the touchpad (with about 200ms delay).

2 The prototype touchpad

We use a prototype of a Touchglobe spherical touchpad [12] for the application
of machine learning techniques. The hardware of the touchpad is built as a criss-
crossed pattern of 100 sensor channels layed out along both the rectangular and
the diagonal directions.

The flat version of the touch-

Figure 1: Graphical data samples. The
first row shows samples from class one,
the second from class two, and so on.

pad we used consists of an array
of 30×20 = 600 taxels attached to
100 sensor channels. Combination
of rectangular and diagonal direc-
tions allows for preprocessing to be
applied in order to somewhat alle-
viate the ambiguity. If one of the
four channels attached to a taxel
has a zero signal, the value at a
taxel is set to zero; otherwise the
value at a taxel is computed as
4

√∏4
i=1 ci of the channel signals ci.

As a result of such preprocessing
a graphical image can be obtained
showing the intensity of pressure
at certain areas on a touchpad. As
another data format we also consider the direct channel readings. These two
data types are referred to as graphical and raw data. Figure 1 shows 25 exam-
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ples of graphical data samples, 5 of each class (one through five fingers pressed)
in each row.

3 Data collection and preprocessing

At this point we are concerned only with static gestures, i.e. touching the de-
vice with a certain number of fingers and releasing the fingers without moving
them along the touchpad. Data was collected by following this procedure, at ir-
regular time intervals, 250 times for each class. The resulting multidimensional
time series, single vectors being either channel values or taxel values from the
graphical representation, had to be further preprocessed to identify the time in-
terval during which the touchpad is pressed and to obtain the features suitable
for training a classifier.

3.1 Segmentation of the continuous time series

Segmentation is essential for applying classification during the operation of
a touchpad since for it to be used for disambiguation, the output should be
obtained as soon as possible after the touch has occurred. To perform segmen-
tation, we use the energy of the signals, which we define as the sum of the
absolute values across all channels at one time instance. Figure 2 shows the
signals recorded in the data channels of both type—raw and graphical—and
their respective energies.

One can see that the
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Figure 2: Two different data types (raw and graph-
ical) of the same sample along with their respective
data energies.

onset of the touch is eas-
ily detected by thresh-
olding the rising front
of the energy signal (with
some heuristic rules to
prevent jitter). Detec-
tion of the release of the
fingers is somewhat more
difficult, but since we
are interested in the clas-
sification of the gesture
as soon as possible, we
cannot wait for the re-
lease event anyway.

3.2 Feature se-
lection: temporal
aggregation

The features to be used in classification are computed by adding up the values
in each channel over the window of size 10, after the onset of the touch is
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detected. Besides ensuring the swift response of the classifier (the delay before
the classification is applied amounts to 50ms at the sampling rate of 200Hz),
temporal aggregation keeps the number of dimensions relatively low: 100 for
the raw data and 120 for the graphical data.

3.3 Centering of the graphical data

An additional kind of preprocessing can be applied to the graphical data to
take into account the invariance to the geometric location of points of contact.
Since we are only interested in the number of contact points and not (at this
point) in their location, we identify a “center of gravity” of the contact points
and re-normalize the images so as to put the center of gravity in a certain
location, namely the upper-left corner of the image.

To compute the center of gravity along dimensions x and y of the graphical
image, the image histograms along each dimension, vx and vy are computed.
Then a center of gravity for each dimension is computed as:

gx =
⌈∑dx

i=1 vi
xi∑

vi
x

⌉
,

and similarly for the dimension y. Let a = I(gx,gy). Then the image matrix I
is transformed as follows:




I11

... I12

· · · a · · ·
I21

... I22


 −→




a · · · · · ·
... I22 I21

... I12 I11


 .

4 Experiments and results

We evaluate the use of three popular modern classification algorithms: the
classical k-nearest-neighbor (KNN) algorithm [4], the Support Vector Machines
(SVM) with polynomial and RBF kernels [16, 11, 14] and the Kernel Fisher
Discriminant [10]. Multi-class classification is implemented by training 5 one-
against-the-rest classifiers and the class with the largest classifier output as the
class of an example.

The experiment is carried out as follows. One third of the data is reserved
for validation; on the remaining two thirds 5-fold cross-validation is used to
determine the optimal model parameters (k in the KNN, C, and kernel param-
eters γ and polynomial degree for SVM and KFD). The process is repeated 10
times to obtain statistically significant results.

Table 1 shows the classification error of SVM with the RBF kernel and
optimal parameters of one-against-the-rest classifiers for the graphical and the
raw data. One can see that the classification is more accurate on the graphical
data. In the remaining part we present the results only for the graphical data.

Classification error of multi-class classifiers is shown in Table 2. Here one
can see a significant advantage of both kernel methods with the RBF kernel.

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 549-554



Graphical data Raw data
class mean std C gamma mean std C gamma

1 0.037 0.012 39.54 0.25 0.019 0.005 46.5 1.33
2 0.077 0.015 17.34 0.16 0.052 0.016 25.2 0.34
3 0.079 0.016 45.94 0.46 0.092 0.014 9.6 0.46
4 0.059 0.012 21.44 0.46 0.096 0.014 13.0 0.54
5 0.014 0.005 9.60 1.20 0.043 0.010 11.6 0.71

Table 1: Classification error of one-against-the-rest classifiers for SVM with
RBF kernel.

classifier mean std
SVM with RBF kernel 0.121 0.016
SVM with RBF kernel and centered data 0.106 0.007
SVM with polynomial kernel 0.263 0.018
K nearest Neighbour 0.171 0.020
Fischer discriminant with RBF kernel 0.134 0.017
Fischer discriminant with polynomial kernel 0.284 0.024

Table 2: Classification error of multi-class classifiers.

Finally, the impact of the centering on the classification accuracy on the
graphical representation is presented in Table 3. One can observe significant
accuracy improvement in classes 1–3 and deterioration of accuracy in classes 4
and 5. This suggests that the notion of the “center of gravity”, is advantageous
for simpler gestures, with some local contextual focus, but leads to problems in
the representation when the gesture is more distributed across the active area.

5 Conclusions and future work

We have shown that classification algorithms such as Support Vector Machines
and the Kernel Fischer Discriminant can be successfully applied to determine
the number of finger strokes on a tactile device with the projective matrix
sensoring. This offers a possibility to extend applicability of such touchpads,
simpler and cheaper than the ones with the array sensoring, from one-touch to

class mean std C gamma
1 0.025829 0.0057451 61.71 0.79393
2 0.037441 0.0070473 5.7017 0.16681
3 0.059242 0.013907 8.4812 0.5469
4 0.081161 0.011009 6.7101 0.24115
5 0.037441 0.0041497 6.2964 0.46416

Table 3: Single class results for centered graphical data
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multi-touch applications. Our future work will address the issues of determining
the exact location of contact points as well as their tracking during chordic
manipulation on a multi-touch device.
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