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Abstract. Adaptable fusion techniques for the combination of local
classifier decisions calculated from different feature subspaces are the
topic of this paper. Decision template fusion is is discussed in the context
of neural network learning algorithms, and applied to the recognition of
bioacoustic time series.

1 Introduction

Combining the classification powers of several classifiers is regarded as a general
problem in various pattern recognition applications [9, 4]. For the decison
fusion static and adaptable combining paradigms [1, 5] have been proposed
and discussed. In the static fusion mapping approach the individual classifiers
of the ensemble are separetely trained by a single pass, and classifier fusion
mapping is implemented by a predefined so-called aggregation rule. Adaptable
fusion mappings are trained by a two-phase training procedure:

1. building the Classifier Layer consisting of a set of first level classifiers
using training data R, and

2. training the Fusion Layer performing a mapping of the classifier outputs
(soft or crisp decisions) into the set of desired class labels by using a
validation set V.

The overall classifier architecture (see Figure 1) is a two-layered structure sim-
ilar to multilayer perceptrons and radial basis functions.

2 Classification Fusion of Local Features

In this Section we propose a static and a trainable fusion architecture for time
series classification. It is assumed that each time series is labeled with its
corresponding class label ω ∈ Ω, Ω = {1, ..., L}. A sliding window W j covering
a small part of the time series s(t)T

t=1 is moved over the whole time series. For
each window W j , j = 1, ...,J a set of I features xi(j) ∈ IRDi , i = 1, ..., I and
Di ∈ IN, is extracted. Typically J , the number of time windows varies from
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Figure 1: MCS with classifier layer and fusion layer. The combination of the
classifier outputs Ci(xi), i = 1, ..., I is accomplished through a fusion mapping
F(C1(x1), ..., CI(xI)). We consider fusion mappings where the classifier output
Ci(xi) are linearly combined.

time series to time series. For s(t)T
t=1 this leads to I feature streams xi(j)Jj=1.

To determine the class membership of an input vector x to all L classes, a fuzzy-
k-nearest-neighbour classifier is used [8]. Such a fuzzy classifier C is defined
as a mapping C : IRD → [0, 1]L, i.e., the output C(x) = (C1(x), ..., CL(x))
contains the memberships of x to each class. After normalization by Cl(x) :=
δl(x)/

∑L
l=1 δl(x) we get soft labels C(x) ∈ ∆ with

∆ := {(y1, ...,yL) ∈ [0, 1]L|
L∑

l=1

yl = 1} (1)

2.1 CDT-Architecture

The CDT fusion performs the classification in three steps:

1.) Classification of single feature vectors (C-step)
For each feature i = 1, ..., I a classifier Ci is given through a mapping

Ci : IRDi → ∆. (2)

Thus, for each time window W j , j = 1, ...,J , I classification results
C1(x1(j)), ..., CI(xI(j)) based on the individual features x1(j), ...,xI(j)
are calculated.

2.) Decision fusion of the local decisions (D-step)
For each time window W j the I classification results are combined into
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a local decision zj ∈ ∆ through a fusion mapping F : ∆I → ∆

zj := F(C1(x1(j)), ..., CI(xI(j))), j = 1, ...,J . (3)

3.) Temporal fusion of decisions over the whole time series (T-step)
The combination of the local decisions of the whole set of time windows
W j , j = 1, ...,J is given through

zo := F(z1, ..., zJ ). (4)

In the numerical experiments we applied averaging : F(z1, ..., zN ) =
∑N

n=1 zn

for decision fusion (see Eq. 3) and the temporal integration (see Eq 4).

2.2 Decision Templates

The concept of decision templates as a trainable aggregation rule was intro-
duced by Kuncheva [5, 6]. For a trained classifier C, decision templates T ω

for each class ω ∈ Ω can be calculated by the average of the local classifier
outputs C(xµ(·)) for inputs xµ(·) from a class ω [6]:

T ω :=
1

|Vω|
∑

xµ(j)∈Vω

C(xµ) (5)

Vω is a validation set of IRD × {ω} differnent from the classifier training set.
Decision template T ω ∈ ∆ can be interpreted as a characteristic classifier
output for the inputs xµ(·) of Vω. In the case of I input features with classifier
mappings Ci : IRDi → ∆, i = 1, ..., I the decision template T ω of class ω is
given by a (I × L)-matrix

T ω :=
(
T ω

1 , . . . , T ω
I

)
∈ ∆I . (6)

Hereby T ω
i ∈ ∆ is the decision template of the i-th feature space IRDi and target

class ω. The local decision profile Pj for an input X(j) = (x1(j), ...,xI(j)) is
given by the individual classifier outputs of the I classifiers

Pj(X(j)) = [C1(x1(j)), ..., CJ (xJ (j))]T ∈ ∆I . (7)

Classifiers C1, ..., CI are applied to calculate the local decision profile Pj (see
step (a) in Algorithm DT). Then for each class ω ∈ Ω a local class membership
value zj

ω based on a similarity measure S between the decision profile Pj and
the decision template T ω is calculated (see step (b) and Eq. 8). After tem-
poral integration of local decisions (see step (c)) the class with the maximum
membership ω∗ is the final decision, see step (d). As similarity measure the
normalized Euclidean distance was used:

S(P, T ω) := 1− 1
2I

I∑
i=1

||Pi,· − T ω
i,·|| ∈ [0, 1]. (8)
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Algorithm ω∗ = DT((X(j))Jj=1, (T ω)L
ω=1)

foreach j = 1, ...,J
(a) Pj = [C1(x1(j)), ..., CI(xI(j))]T

foreach ω ∈ Ω
(b) zj

ω = S(Pj , T ω)
end

end
(c) z = F(z1, ..., zJ )
(d) ω∗ = argmax

ω
(zω)

—

Algorithm DT: Classification of time series (X(j))Jj=1 consisting of J local
feature vectors with decision templates.

3 Decision Templates and Neural Networks

The training of a multiple classifier system (MCS) with a decision template
layer is very similar to radial basis function (RBF) network training, where
the network is learnt by two or three learning phases. In Fig. 1 a two-layer
multiple classifier system (MCS) is presented. Here the combination of the
classifier outputs Ci(xi), i = 1, ..., I is accomplished through a fusion mapping
F(C1(x1), ..., CI(xI)), where the classifier outputs Ci(xi) are multiplied by ma-
trices V i, i = 1, ..., I and the decisions z1, ..., zI are combined by averaging.
The matrices V i are adapted through an supervised learning phase. For this,
it is assumed that the desired classifier outputs ωµ ∈ Ω of inputs xµ

i ∈ V are
given by the (L × M)-matrix Y (L the number of classes, M the number of
training patterns) defined by the 1-out-of-L encoding scheme for class labels
Yl,µ = 1 iff l = ωµ. Corresponding to Ci the µ-th column Y·,µ ∈ ∆ contains
the binary coded target output of feature vector xµ

i ∈ V.
Now, let T ω

i ∈ ∆ be the decision template of the i-th feature space and
for class ω (see Eq. 5). Then for each classifier i = 1, ..., I, a (L × L)-decision
template V i is given by the decision templates of the i-th feature space

V i :=
(
T 1

i , . . . , T L
i

)
∈ ∆L. (9)

this can be written as
V i := (Y Y T)−1 (Y CT

i )︸ ︷︷ ︸
=:W i

. (10)

So in the decision template approach the linear mappings V i are basically given
by the the confusion matrix W i := Y CT

i .
A second approach to calculate a linear decision fusion mapping F is given

by the minimal least squares solution between the classifier outputs and the
target outputs. This error function is often used to train single layer neural
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networks, e.g. the output layer of RBF networks. The solution of the error
function can be expressed by

V i := lim
α→0+

(Y CT
i )︸ ︷︷ ︸

=W i

(CiC
T
i + αI)−1. (11)

Thus, if CiC
T
i is regular the solution of V i reduce to

V i = Wi(CiC
T
i )−1. (12)

As for the the decision template approach, the matrices V 1, ..., V I based on the
confusion matrices W i := Y CT

i .

feature average DTcomp.
I 29.35 20.20
II 22.64 18.91
III 26.87 22.49

Table 1: Error rates(in %) for the CDT architecture with averaging fusion
mapping F and the decision template fusion; results for three different feature
subspace combinations are given.

4 Application and Conclusion

We present results achieved by testing the algorithms on a dataset which con-
tains sound patterns from 22 different katydid species. The dataset contains
recordings of 6 to 12 different individuals per species. Recordings are pro-
vided from Ingrisch [3], Nischk [7] and Heller [2]. Sound patterns are stored
in the WAV-format (sampling rate ranges fro 44.1 kHz to 500.000 kHz, 16 Bit
sampling accuracy). The katydid songs consist of sequences of sound patterns
called syllables. Based on these syllables (sequences of so-called impulses) the
katydid species are classified [7]. Therefore we determine the on- and off-sets
of these single impulses in order to get the relevant parts of the signal. The
time windows W t, t = 1, ..., T are aligned at the onsets and offsets of the
pulses and the features: pulse length, pulse distances and pulse frequencies,
time encoded signals, and energy contours of pulses are calculated inside these
windows (details about the feature extraction can be found in [1]). In Table 1
the classification results for the proposed fusion schemes are given for three
feature compositions. In all cases the decision template approach outperform
the static averaging fusion mapping.

The basic conclusion of our experiments is that the decision template ap-
proach can improve the classifier performance in comparison to the combina-
tion of multiple classifiers with averaging. Finally, and independent from these

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 555-560



questions of fundamental research, the classifier system described here could
be implemented in order to detect, classify and monitor biodiversity. Addition-
ally we have shown that the solution in decision templates approach of MCS is
similar to the least squares solution for linear single layer neural networks.
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