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Abstract. This work introduces a modified Grid Based Fuzzy Sys-
tem architecture, which is especially suited for the problem of time series
prediction. This new architecture overcomes the problem inherent to
all grid-based fuzzy systems when dealing with high dimensional input
data. This new architecture together with the proposed algorithm al-
lows the possibility of incorporating a higher number of input variables,
keeping low both the computational complexity of the algorithm and the
complexity of the architecture.

1 Introduction

A wide range of paradigms have been applied to the well-known problem of
Time Series Prediction [1, 2]. In particular Fuzzy Systems have been success-
fully applied for several specific cases [1, 8]. Fuzzy Clustering as well as Radial
Basis Functions (RBF) are usually applied for this topic since they consider
the coverage of the data points in the input space.

Certainly, chaotic time series forecasting is a non well-defined problem in
the sense that it is practically impossible to select an optimal set of input
variables that univocally or appropriately define the output of the time series
for any given prediction horizon.

In this paper we propose a new grid-based fuzzy approach [3] (in contrast
to clustering or RBF approaches [4]) for function approximation adapted to
Time Series Forecasting.

The new type of fuzzy system will provide some advantages with respect to
other proposed architectures for time series prediction. The main advantage is
the possibility of considering a high number of input variables, therefore offering
the possibility of increasing the performance of the proposed system (as we will
see in the Simulations section). This cannot be done in some other approaches
applied to time-series forecasting due to the computational complexity involved
in them [1, 2]. Also the error obtained with our type of system for a similar
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Figure 1: MultiGrid-Based Fuzzy System (MGFS)

number of parameters is at least similar to some very good algorithms presented
in the literature.

Another very important advantage of this architecture is the possibility of
identifying dummy relations among the input variables, while identifying and
considering only strong relations among the variables.

The approach presented here opens a door for two important questions
when tackling time series prediction problems: the consideration of a higher
number of input variables and the identification of the relations among the
input variables involved, simplifying considerably the computational cost.

2 MultiGrid-Based Fuzzy Systems (MGFS)

Considering in general grid-based fuzzy systems for function approximation
problems, when dealing with a high number of input variables, an N -dimensional
grid might seem useless for our aim of obtaining a useful approximation of the
given data points, since having too many rules as well as too many antecedents
on each rule, results in an incomprehensible huge model. Besides, the manage-
ment of so many parameters may reach an efficiency bottleneck, resulting in a
problem practically impossible to optimize.

Figure 1 shows the proposed MGFS architecture [3] to deal with high di-
mensional input spaces.

Each group of variables are used to define a Grid-Based Fuzzy System
(GBFS) from which a set of rules is obtained in the form [5]:

IF x1 is Xi1
1 AND . . . AND xN is XiN

N THEN Rp
i = Ri1i2...iN

(1)

being Rp
i the i−th rule of the p−th GBFS. Thus, all the rules from all the GBFS

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 127-132



Figure 2: MGFS Different topologies

form the whole MGFS, whose output is obtained by normalizing according to
the number of GBFS. Therefore the final output of the system for any input
value ~x = (x1, x2, , xN ), (considering weighted sum defuzz.) can be expressed:

F (~x,MF, R,C) =
P∑

p=1

Rp∑
j=1

Rp
j

Np∏
m=1

µjp
m(xm) (2)

where explicit statement is made on the dependency of the output function
with the structure of membership functions (MF ) of the system, with the
consequents of the whole set of rules R, and with the hard structure of the
system C =
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1
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1
N1

}
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2
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xP
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Np

}}
, i.e, the input

variables entering each individual GBFS.
Several architecture forms are therefore possible for any given problem with

a set of input variables (see Fig2). The simplest case occurs when each variable
forms a single set (maybe some variables are even not present if they don’t have
influence on the output of the system), then each rule on each set of variables
has a single antecedent.

Many more complex configurations are possible for all the combinations
(permutations on the number of input variables) until keeping only one set of
the whole number of input variables, that is the case of having a (single) grid
based fuzzy system (GBFS).

Now that we have an architecture that, when possible, might reduce the
number of rules exponentially, we will study how we can calculate the subjacent
data model structure to group the variables and form the optimal MultiGrid-
Based Fuzzy System (MGFS).

3 MultiGrid Structure Identification for Time
Series forecasting

We present a very effective and automatic algorithm to determine the groups
of variables that will form each GFSs. All the GFSs together will comprise the
system hard-structure, as shown in Fig 1.

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 127-132



A Top-Down algorithm was presented in [3] that, from a complete GBFS
discards more complex structures in favor of simpler ones while keeping a cer-
tain error limit and keeping the number of MFs per variable. This approach,
though very powerful to discover intrinsical relations in the input variables, has
several disadvantages that makes it unsuitable for time series forecasting. The
starting point is a whole GBFS system (as in fig 2.c), which can be computa-
tionally too expensive when having a high number of input variables. Besides,
the risk of overfiting the training data is very high unless we perform an initial
step to obtain a pseudo-optimal number of MFs per variable before running
the algorithm [7].

A different approach can now be taken by starting with the simplest con-
figuration possible (see fig2.a) and performing a search in groups-complexity
increase. A different idea surrounds this second alternative: instead of looking
for keeping the error tolerance while reducing the whole-system complexity, we
will keep a certain computational complexity limit (number of parameters to
be optimized = number of rules) while searching for the system that performs
best, given this number of rules.

The limit in the number of rules for which we will search the best MGFS
structure, can be selected taking into account the number of training points
that we have, considering that usually it is not worth having a higher number
of parameters that data and also the computational cost of the algorithm used.

Given the limit in the number of parameters, in order to equitably compare
different MGFS structures throughout the proposed algorithm, a second key
issue is the distribution of these rules among all the sub-grids (GFSs) forming
the MGFS, thus maintaining the complexity of the whole system. The total
number of rules is equally split in every GFS and, inside each GFS, an equal
number of homogeneously distributed triangular-partitioned MFs [7] is given
to each input variable defined in each GFS. The optimal rule consequents can
then be obtained by linear methods [7, 3].

In order to force the algorithm to consider the highest number of architec-
tures from the combinatorial number of different configurations of MGFSs, the
algorithm works in a greedy manner. It won’t search for component GFSs of
order n until all the possible combinations of n − 1-order sub-grids, given the
current structure, has been explored to test if its addition decreases the error
for the same complexity. Then the n-complexity GFS will be tested and so on.

4 Simulations

To see how the proposed architecture can effectively deal with high-dimensional
problems, we will consider here the well-known Mackey-Glass time series [10].
First, let’s accomplish the typical configuration of n = 4 and P = 6, having
500 training points and 500 test points.

The number of parameters (rules) taken is equal to 200. Notice that this is
a value that can act as a fictitious upper limit for a problem having only 500
data points for training, thus having one rule per each 2 points. The algorithm
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Table 1: Comparison Results of the prediction error of different methods for
prediction step equal to 6 (500 training points)

Method RMSE
Auto Regressive Model 0.19
Cascade Correlation NN 0.06

Back-Prop. NN 0.02
6th-order Polynomial 0.04

Linear Predictive Method 0.55
Kim and Kim (Genetic Algorithm and 5 MFs 0.049206

Fuzzy System [6] 7 MFs 0.042275
9 MFs 0.037873

ANFIS and Fuzzy System (16 rules)[8] 0.007
Classical RBF (with 23 neurons)[9] 0.0114

PG-RBF[2] 0.0030
Our approach (MGFS) n = 4 0.0033
Our approach (MGFS) n = 8 0.0018

starting from the simplest configuration having four sub-grids with one vari-
able each, reaches a sub-optimal configuration of three GFSs of two variables
each, discarding any other more complex structure. The sub-grids forming the
MGFS are: {x(t), x(t− 6)} , {x(t), x(t− 12)} , {x(t), x(t− 18)}, each one hav-
ing a 8x8 MFs configuration. The test RMSE obtained with this structure and
equidistributed MFs is equal to 0.0033.

Now consider taking n = 8 and P = 6; the complexity of the considered
problem is exponentially superior than that having n = 4 for many paradigms.
Let’s consider again the same limit of 200 rules. The algorithm starts with
8 simple GFs with one variable each, and will evolve by gaining in structure
complexity while keeping the number of rules in order to decrease the error.
The pseudo-optimal configuration encountered has 6 GFs of 3 variables with
3 MFs each ({x(t), x(t-6), x(t-12)}, {x(t), x(t-12), x(t-36)}, {x(t), x(t-18),
x(t-36)}, {x(t), x(t-24), x(t-42)}, {x(t-6), x(t-18), x(t-24)}, {x(t-6), x(t-24),
x(t-36)}), one of two variables with 4 MFs each ({x(t− 6), x(t− 42)}) and one
with one variable with 12 MFs ({x(t− 30)}). The test error obtained with
this structure is equal to 0.0018. See table 1 for some comparisons with other
well-known approaches in the literature.

5 Conclusions

This paper has introduced a modified GBFS architecture, called MultiGrid-
Based FS, which is especially suited for the problem of time series prediction,
since it can tackle with high dimensional input data keeping the same com-
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plexity and avoiding the curse of dimensionality problem. The performance
of the architecture and of the algorithm proposed has been tested using the
well-known Mackey-Glass time series. The comparison with other approaches
reveal the suitability of the proposed methodology.
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