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Abstract. We consider two different methods for QSAR/QSPR regres-
sion tasks: Recursive Neural Networks (RecNN) and a Support Vector
Regression (SVR) machine using a Tree Kernel. Experimental results on
two specific regression tasks involving alkanes and benzodiazepines are
obtained for the two approaches.

1 Introduction

In recent years several researchers have started to consider the adaptive pro-
cessing of structured data. This interest is motivated by two main reasons: i)
several very important computational problems in bioinformatics, chemistry,
document classification and filtering (just to name a few), require the use of
some machine learning procedure to be properly treated because their com-
plexity does not allow a formal and precise definition of the problem and thus
no algorithmic solution to the problem is known; ii) in many of the above
problems, the objects of interest are more naturally represented via structured
representations of different sizes, such as sequences, strings, trees, directed or
undirected graphs, which retain all the structural information relevant for solv-
ing the task.Within this area there are two main streams of research relevant
for the neural network community: a) Recurrent and Recursive Neural Net-
works (see, for example, [4]); b) Kernel Methods for Structured Data (see, for
example,[5]).

The work presented in this paper is a small empirical step towards a study
on the merits and drawbacks of these two approaches. Here we consider one
QSAR and one QSPR regression task and we report the experimental results
we have obtained by the two approaches.

2 Recursive NN and a Tree Kernel

Recursive neural networks (RecNN) [8] are neural network models able to re-
alize mappings from a set of directed positional acyclic graphs (DPAGs) (with
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labeled nodes) I# to the set of real vectors. Specifically, the class of functions
which can be computed by these models can be characterized as the class of
functional graph transductions τ : I# → R

k, which can be represented in the
following form τ = g ◦ τ̂ , where τ̂ : I# → R

m is the encoding function and
g : R

m → R
k is the output function. Specifically, given a DPAG Y , τ̂ is defined

recursively as

τ̂ (Y ) =
{

0 (the null vector in R
m) if Y = ξ

τ(s, Y s, τ̂(Y (1)), . . . , τ̂(Y (o))) otherwise
(1)

where a (stationary) τ can be defined as τ : R
n ×R

m × · · · × R
m︸ ︷︷ ︸

o times

→ R
m, R

n is

the label space, the remaining domains represent the encoded subgraphs spaces
up to the maximum out-degree of the input domain I#, o is the maximum
out-degree of DPAGs in I#, s = source(Y ), Y s is the label attached to the
source of Y , and Y (1), . . . , Y (o) are the subgraphs pointed by s. The specific
neural architecture, based on the above recursive function, we have used for the
experiments reported in this paper is Recursive Cascade Correlation (RecCC),
fully described in [8].

Concerning the kernel operating on trees, we have chosen the most popular
and used Tree Kernel proposed in [2]. It is based on counting matching subtrees
between two input trees. Given an input tree x, let sx be a subtree of x if sx

is rooted in a node of x and the set of arcs of sx is a subset of connected arcs
of x. We assume that each of the m subtrees in the whole training data set is
indexed by an integer between 1 and m. Then hs(x) is the number of times
the tree indexed with s occurs in x as a subtree. We represent each tree x
as a feature vector φ(x) = [h1(x), h2(x), . . . ]. The inner product between two
trees under the representation φ(x) = [h1(x), h2(x), . . . hm(x)] is: K(x, y) =
φ(x) · φ(y) =

∑m
s=1 hs(x)hs(y).

Experimental results showed that this kernel may weight larger substruc-
tures too highly, producing a Gram matrix with large diagonals. In [2], they
describe a method to dim the effect of the exponential blow-up in the number
of subtrees with their depth. We can downweight larger subtrees modifying
the kernel as follows: K(x, y) =

∑m
s=1 λsize(s)hs(x)hs(y) where 0 < λ ≤ 1 is a

weighting parameter and size(s) is the number of nodes of the subtree sx. The
Tree Kernel can be calculated with a recursive procedure in O(|NX | · |NY |)
time where NX and NY are the sets of nodes of trees x and y, respectively.

3 QSPR/QSAR Tasks

Here we consider two paradigmatic instances of the regression problem defined
on a structured domain, one for QSPR analysis, and one for QSAR analysis.
Both problems have been previously faced by RecNN and favorably compared
with respect to state-of-the-art standard approaches used in the QSPR/QSAR
field [7, 1].
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The QSPR problem consists in the prediction of the boiling point for a group
of acyclic hydrocarbons (alkanes). The data set used is described in [6] and
comprised all the 150 alkanes with up to 10 carbon atoms, allowing to consider
the problem of coping with structures of different sizes. The target values
are in the range approximatively, in Celsius degrees, [-164 , 174]. The QSAR
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Figure 1: Example of representation for an alkane and a benzodiazepine.

problem considered here involves a class of chemical compounds belonging to
a class of therapeutical interest: benzodiazepines. Several QSAR studies have
been carried out aiming at the prediction of the non-specific activity (affinity)
towards the Benzodiazepine/GABAA receptor. A group of benzodiazepines
(Bz) (classical 1,4-benzodiazepin-2-ones) has been used for our experiments
[7]. The total number of molecules is 72, of which 5 are used as test set. The
target values range in [ 6, 9 ]. The analyzed molecules present a common
structural aspect given by the benzodiazepine ring and they differ each other
because of a large variety of substituents at the positions showed in Fig. 1.
Molecular Structure Representation

An appropriate description of the molecular structures analyzed in this work
is based on a labeled tree representation. Thus, both RecNN and Tree kernel
can be applied, allowing us to preliminary compare them on a fair basis.

In order to obtain an unique structured representation of each compound,
and their substituent fragment, as labeled positional trees (k-ary trees, which
are a subclass of DPAGs), we have defined a set of representation rules.

It is worth to note that alkanes (acyclic hydrocarbons molecules) are trees.
In order to represent them as labeled k-ary trees, carbon-hydrogens groups are
associated with vertexes, and bonds between carbon atoms are represented by

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 293-298



edges; the root of the tree can be determined by the first carbon-hydrogens
group according to the IUPAC nomenclature system and the total order over
the edges can be based on the size of the sub-compounds.

In the case of benzodiazepines, the major atom group that occurs unchanged
throughout the class of analyzed compounds (common template) constitutes
the root of the tree. Note that, an alternative representation, would have been
to explicitly represent each atom in the major atom group (by a graph based
representation). However, since this group occurs in all the compounds, no
additional information is conveyed by adopting this representation. Finally,
each substituent fragment is naturally represented as a tree once cycles are
treated as replicated atom groups and described by the label information.

As a result the use of labeled trees (namely labeled k-ary trees) does not
imply the loss of relevant information for these classes of compounds, which are
representative of a large class of QSPR and QSAR problems. In particular, the
representation of compounds is strictly related to the molecular topology and
also conveys detailed information about the presence and types of the bonds,
the atoms, and the chemical groups and chemical functionalities. Examples of
representations for alkanes and benzodiazepines are shown in Fig. 1.

Summarizing, the representation rules (that are fully discussed in [7] and
[1] for these sets of compounds) allows us to give an unique labeled k-ary tree
representation of various sets of compounds through a conventional represen-
tation of cycles, by giving direction to edges, and by defining a total order over
the edges. Since the rules are defined according to the IUPAC nomenclature,
they retain the standard representational conventions used in Chemistry.

4 Experimental Comparison

The target values of the datasets are obtained by experimental procedures, so
it is useful to fit them according to a maximal tolerance (εt) on the error. The
used tolerance values are compatible with the experimental error and other
QSPR/QSAR studies, i.e. εt = 8 for the alkanes dataset and εt = 0.4 for the
benzodiazepines dataset.

For RecNN we decided to stop training whenever the maximum absolute
training error was below εt. The software we used for the SVR algorithm
(SVMLight 5.0) follows a stop criterion based on the violation of the Kuhn-
Tucker conditions of the computed dual solution. In fact, the criterion used
by the solver disregards patterns with large error and with a related dual vari-
able equal to C. So, the solution given in output can exhibit a maximum
absolute training error that is above the experimental error. For the sake
of comparison, we considered also a stop criterion where training is stopped
when every support vector has an absolute error below εt. We decided to
compose the Tree Kernel K(x, y) with an RBF kernel obtaining the kernel
KRBF (x, y) = e−σ(K(x,x)−2K(x,y)+K(y,y)).

For the alkanes dataset we performed a 10-fold cross validation. The benzo-
diazepines dataset consists in a split of 67 training patterns and 5 test patterns.
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alkanes
Method mAE tr VAE tr mAE ts VAE ts C σ w λ

RecCC 2.15 0.013 2.86 0.492 εt ≤ 8
TKRBF 3.23 0.137 3.59 0.840 1e3 1 0.1 0.45
TKRBF,c 2.68 0.015 3.09 0.463 1e3 0.1 2 0.55

benzodiazepines
Method MAE tr mAE tr MAE ts mAE ts C σ w λ

RecCC 0.360 0.087 0.606 0.255 εt ≤ 0.4
TKRBF 1.355 0.616 1.175 0.779 1e3 0.01 1 0.55
TKRBF,c 0.366 0.175 0.883 0.242 1e3 1e-3 0 0.63

Table 1: Results for the alkanes and benzodiazepines datasets.

Due to the large amount of parameters allowed by the RecCC models, an
initial set of preliminary trials were performed just to determine an admissible
range for the learning parameters. However, no effort was done to optimize
these parameters with respect to the two specific tasks: the main aim of the
experiments was to show how RecCC could deal with two completely different
tasks using the same basic models. Due to the different result achieved by
different random initialization for the connection weights, various trials were
carried out for the RecCC simulations and the mean values have been reported
over five trials (alkanes) and six trials (Bz), respectively.

For the calibration of SVR hyperparameters for alkanes, we shuffled the 150
patterns and we created 30 splits of 5 patterns each. The calibration involved a
set of 4 parameters: the SVR training error weight constant C, the RBF kernel
width σ, the SVR regression tube width w and the Tree Kernel downweighting
factor λ. On the last 3 splits we applied a 3-fold cross validation based on a
mesh of 5 × 5 × 5 × 9 vectors spanning the parameters space. We selected the
parameter vector that gave the median of the best mean absolute validation
error on the three splits and then we used these parameters for the 10-fold cross
validation. For benzodiaziepines calibration we applied a 3-fold cross validation
based on the same parameters mesh. We selected the parameter vector that
gave the best mean absolute validation error and we evaluated the algorithm
on the original test set.

At the top of Table 1 we report the results obtained on the alkanes dataset
with the RecCC algorithm (RecCC) [6], with an SVR with a standard ter-
mination criteria (RBF TK) and with an SVR that terminates only when the
maximum absolute error on input patterns is below the given tolerance εt (RBF
TKc). We report the mean absolute training error (mAE tr), the variance of
the absolute training error distribution (VAE tr), the mean absolute test error
(mAE ts), the variance of the absolute test error distribution (VAE ts) and the
obtained calibration parameters. The bottom of Table 1 shows the results ob-
tained with the three algorithms on the benzodiazepines dataset. For the each
run on the training and test set, we report the maximum absolute error on the
training set (MAE tr), the mean absolute error on the training set (mAE tr),
the maximum absolute error on the test set (MAE ts), the mean absolute error
on the test set (mAE ts) and the obtained calibration parameters.
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5 Conclusion

The preliminary experimental results we have obtained show that using the
same stopping criterion there is no much difference between RecCC and SVR
with the Tree Kernel proposed in [2]. Due to the relatively small size of trees in
the used datasets, SVR training is usually faster then RecCC training. How-
ever, when considering larger datasets, the computational complexity of the
kernel is going to slow down training of SVR (see for example [3]), since the
kernel matrix computation is O(L2 × N2) where L is the number of training
examples and N = maxs∈[1,m] size(s), while in RecCC each batch training it-
eration costs O(H2 ×L×N), where H is the number of hidden units. Thus it
is clear that the matrix kernel computation depends quadratically on both L
and N while for RecCC there is only a linear dependence.
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