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Abstract 
Our group is developing artificial neural networks that may be implemented using 
hybrid semiconductor/molecular (“CMOL”) circuits. Estimates show that such 
networks (“CrossNets”) may eventually exceed the mammal brain in areal density, at 
much higher speed and acceptable power consumption.  In this report, we 
demonstrate that CrossNets based on simple (two-terminal) molecular devices can 
work well in at least two modes: as Hopfield networks with high defect tolerance, as 
well as simple and multilayer perceptrons.   

 
1. Introduction 
Recent spectacular advances in molecular electronics (see, e.g., Refs. 1-3) give every 
hope for the electronic industry transfer, on a relatively short time scale - in 10 to 20 
years - from a purely semiconductor-transistor (“CMOS”) technology to hybrid 
semiconductor/nanowire/molecular (“CMOL”) integrated circuits [4]. Such circuits 
may feature unprecedented density (up to 1012 active devices per cm2), at acceptable 
fabrication costs. However, their molecular devices may have limited functionality 
(e.g., low voltage gain) and can hardly be assembled with a 100% yield. This is why 
they are more suitable for the implementation of naturally defect-tolerant artificial 
neural networks, than Boolean logic circuits.  We have  proposed [5-8] a family of 
ANN architectures called Distributed Crossbar Networks (“CrossNets”) whose 
topology is uniquely suitable for CMOL implementation – see Fig. 1. CrossNet 
synapses are based on simple molecular devices (latching switches [5, 6]), while 
neural cell bodies (somas) may be implemented in the CMOS subsystem that 
physically underlies the molecular device level.  

Our previous work was focused on CrossNets with three-terminal latching switches. 
In particular, we have shown [7, 8] how CrossNets of a specific (“InBar”) variety, 
based on such switches, can be used as Hopfield networks, e.g., for fast restoration of  
corrupted images. The goal of this communication is to report three new important 
results. First, we proved that the Hopfield operation mode of CrossNets may be highly 
defect-tolerant, in some cases providing 99% fidelity with more than 80% fraction of 
bad devices - see Sec. 2. Second, the same functionality may be obtained with two-
terminal switches (like those considered in our first work [5, 6]) that are much simpler 
for self-assembly than their three-terminal counterparts (Sec. 3). Finally (Sec. 4), 
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another CrossNets species (“FlossBar”), using a few switches per synapse, may be 
taught to function as either simple or multilayer feedforward perceptrons, with a very 
limited loss of performance in comparison with their continuous-weight prototypes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Hopfield-Mode Defect Tolerance 

A major challenge for CMOL CrossNet circuits is a lack of direct external access to 
individual molecular devices. As a result, special procedures are required for  
individual synaptic weight adjustment. Previously we had shown [7, 8] how this 
adjustment may be performed in recurrent InBar-type CrossNets. In the result of the 
adjustment, the CrossNet may function as a quasi-localized (finite-connectivity) 
Hopfield network with clipped symmetric weights. Our study have shown that, 
similarly to the fully-connected [9, 10] Hopfield networks, the network capacity loss 
due to clipping is rather marginal (~30% for 99% fidelity.)  

In this work we have studied defect tolerance of this operation mode, using both the 
(approximate) analytical theory and numerical modeling. Figure 2 shows results 
obtained for a 3744-neuron InBar with connectivity parameter M = 25. (Each neuron 
is directly connected to 4M = 100 other neurons, via two 4-switch synapses each 
way.)  It is remarkable how resilient the network may be if the number of stored 
patterns P is not too close to Pmax ~ 0.4M [7]. For example, for P = 3 or 4, the network 

Fig. 1. CrossNets: (a) general structure, 
and two major species: (b) InBar and (c) 
FlossBar [5-8]. Red lines are axonic, and 
blue lines dendritic nanowires. Gray 
squares show interfaces between 
nanowires and CMOS-based cell bodies 
(somas). Signs show the dendrite input 
polarities. Green circles denote latching 
switches; marked are the two switches 
connecting cells j and k.  Bold red and 
blue points are open-circuit terminations 
of the wires, that do not allow direct 
interactions of the somas and limit cell 
connectivity. In recurrent CrossNets, 
similar feedback connections are added.  
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functions reasonably well (with 99% fidelity) even in the case when almost 85% of 
switches are bad.  

3. Using Two-Terminal Devices 
The main component of our previous designs [7, 8] was a three-terminal latching 
switch. The reason for that choice was that such switches serve as a basis of synapses 
with quasi-Hebbian dynamics. However, chemically-directed self-assembly of such 
molecules on prefabricated nanowires (the key step in CMOL circuit fabrication) with 
high yield presents a major technological challenge. The assembly may be much 
easier for two-terminal devices, possibly with the common third electrode [1-3] for 
global parameter adjustment.  

In this work we show that CrossNets may indeed use two-terminal latching switches 
[5, 6] in architectures where the synaptic weight adjustment (training stage) may be 
separated from neural dynamics (operation stage). In fact, the ON/OFF switching 
rates of a two-terminal switch depend on both axonic and dendritic voltage [5-8]:  

   Γ↑↓ = Γ0exp{[±(Va - Vd ) - Vt]/T}.   (1) 

Here Vt is the switching threshold, while T « Vt is the effective temperature expressed 
in voltage units. During the operation stage, low input resistance RL of somatic cells 
may be used to reduce Vd well below Va, thus preventing the undesirable anti-Hebbian 
readjustment of synaptic weights [5-8]. On the other hand, in the training mode the 
somatic cells (implemented with flexible CMOS circuits) may be readily re-
configured to apply voltages proportional to the cell activity xj to all nanowires, axons 
and dendrites alike. For example, for switches in the synapse connecting cells j and k, 
we may make Va = V0xj, Vd = -V0xk (xj,k = ±1). At the appropriate choice of V0 (T « Vt ≲ 
V0), only one switch of the two (jk± in Fig. 1) will be in the ON state, thus ensuring 
that the synaptic weight follows the clipped Hebb rule: 

    wjk = sgn (xj×xk).    (2) 

Fig. 2. The fraction of 
wrong output bits as a 
function of the fraction of 
disconnected latching 
switches. Lines show the 
results of an approximate 
analytical theory, while 
dots those of  a numerical 
experiment. 
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In particular, this property allows one to write desirable weight values into all 
synapses of any CrossNet with ordered geometric positions of somatic cells, e.g., 
InBar or FlossBar (Fig. 1b,c), from outside, row by row. For that, fixed “write enable” 
signals xj = V0  are sent to the horizontal wire of one switch row, “write disable” 
signals xj = -V0 to all other horizontal wires, while the signals xk = ± V0, with the sign 
corresponding to the desirable wjk, are applied to all vertical wires. (For example, in 
the Hopfield mode wjk = sgn[Σpξj

(p)ξk
(p)], where ξj

(p) is the j-th pixel on the p-th pattern 
[10]). An elementary analysis shows that after this procedure all “selected” synapses 
(belonging to the selected row) will acquire the weights given by Eq. (2), while the 
weights of “deselected” synapses of all other rows (including those set earlier) would 
not be perturbed.  

 
4. Multi-Valued Synapses  
Some CrossNet species, e.g., feedforward FlossBars (Fig. 1a,c) may be used as 
multilayer perceptrons. Unfortunately, the information loss at synapse clipping may 
affect the performance of such feedforward networks as pattern classifiers more 
seriously than the Hopfield networks. For example, Fig. 3 shows the average error of 
a simple perceptron, induced by synapse clipping, i.e. rounding to the closest of L 
quantization levels.  (We have got almost similar results for multilayer perceptrons, 
with effects of clipping slowly growing with the number of layers.) One can see that 
for binary synapses the error is above 20%, unacceptable for most applications. At the 
same time, an increase of the number of levels to, say, 32 makes the clipping-induced 
errors negligible (below 1%).  
 
 
 
 
 
 
 
 
 
 
 
 
 
Such multi-valued synapses, with L = 2n2+1, may be readily implemented by 
replacing each switch shown in Fig. 1 with a square array of n×n latching switches  
(Fig. 4).  In the operation mode, all n axonic wires are fed with the same voltage, 
while the resulting currents flowing into n dendritic wires are just summed up. As a 
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Fig. 3. Output error ε of a 
simple perceptron, induced by 
synaptic weight rounding to L 
discrete values. Each numerical 
result was obtained by 
averaging over 100 random 
input vectors. The  results are 
described reasonably well by 
the simple formula ε = 0.5 –
arctan(L–1)/π, following from 
an approximate analytical 
treatment. 
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result, the net output (post-synaptic) signal from two arrays is proportional to w = (l+ - 
l-) /n2, where l± are the numbers of switches turned ON in each array.  
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Fig. 4. A half of a composite synapse providing L = n2+1 discrete levels of the synaptic 
weight, and its possible interfaces with somatic cell in (a) operation and (b) training mode. 
The dark-gray rectangles are resistive metallic strips (with total resistance RS « RL) serving as 
soma/nanowire interfaces. 

(V0)k +Vs(V0)k 
 
In order to fix the desirable value of l± in each array during the weight adjustment 
mode, both vertical and horizontal wires are fed with graded voltages: Vi = V0 + 
Vs×i/n, here 0 < i < n is the wire number. This creates a gradient of the net voltage 
applied to switches and hence a domain of switches being turned on, with a boundary 
whose position depends on the average values V0 of both horizontal and vertical 
voltages.  (The boundary is inclined relative to the array edges, thus providing for a 
smoother l(V0) dependence.) A simple analysis, similar to that cited in Sec. 3 above, 
shows that the maximum possible value of the spread Vs equals Vt/3, and is achieved 
for the following values of V0: 
 - write enable: Vt/3, 
 - write disable: -Vt/3, 
 - write: from +2Vt/3 (for w = +1) to –2Vt/3 (for w = -1). 
The necessary voltages may be readily generated by CMOS circuitry of somatic cells, 
with the voltage gradient created, e.g., by simple resistive strips serving as contacts 
for axonic and dendritic nanowires – see Fig. 4. 
 
5. Conclusions and Future Work 

New results described in this work show that CrossNets with simple, two-terminal 
latching switched may work as both Hopfield networks and feedforward perceptrons, 
with very minor performance degradation caused by the switch conductance 
discreteness. For the former application, the ternary synaptic weights (w = {-1, 0, +1}) 
produced by just two latching switches (Fig. 1) are mostly sufficient. For the latter 
networks, especially used as classifiers, multi-valued synapses seem necessary. In this 
case the best set of continuous weights –1 < wjk < +1 should be first generated by an 



external tutor system (say, implemented on usual computers). After that, the necessary 
write voltage (V0)j = Vawjk (with Va ≈  2Vt/3) should be applied to dendritic lines, with 
the corresponding (k-th) axonic line write-enabled and other axonic lines write-
disabled. While this training procedure would be limited in speed by the external 
tutor, the network speed in the operation mode may be extremely high. In fact, our 
estimates [6-8] show that CrossNets with a-few-nm nanowire pitch (limited by 
quantum tunneling) may generate output signals on the nanosecond scale, at 
acceptable power consumption.  

As a result of the advances described in this communication, we believe that 
CrossNets may perform, at much higher speed, any function ever implemented with 
an artificial neural network. Moreover, since CMOL CrossNet circuits may reach very 
high integration scale (beyond 107 neurons per cm2 even at the connectivity ~104), 
hierarchical systems based on such circuits [8] may be capable of performing much 
more intelligent tasks, possibly comparable with those typical for their biological 
prototypes. We are currently exploring this exciting opportunity.  
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