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Abstract

Violent turbulences are often striking the financial markets and an Index of
Market Shocks (IMS) was recently introduced in the attempt of quantifying these
turbulences. Regime switching linear models have already been used in modelling
the conditional volatility of returns. In this paper we propose a description of the
IMS with hybrid models integrating multi-layer perceptrons and hidden Markov
chains. After sudying the prediction performance of these models, we focus on the
series separation and the index behaviour subject to the hidden states.

1 Introduction

The financial “crashes” or “crisis” we hear speaking of in the media, are translated on
the markets by large price movements. Whether it is the Great Depression started in
1929, the one day 22.6% drop of US stocks in October 1987 or the World Trade Center
attacks in September 2001, the markets have experienced powerful turbulences since
their creation. Until recently, there was no way of quantifying these crisis or measuring
how large they were. Traditional measures of risk, such as the implied or the historical
volatility, have some drawbacks in being considered as suitable tools.

Following the initial approach of Zumbach and al (2000), Maillet and Michel (2003)
introduce the Index of Market Shocks (IMS), an easily computable measure that quan-
tifies the importance of market movements. The index was designed in the attempt of
having a scale for measuring the extent of financial crisis, and also as a tool for com-
paring the intensity of strongly agitated periods. Briefly, its construction is a financial
translation of the Richter scale for measuring earthquakes intensity. The first step is to
compute volatilities, from the highest to the lowest frequency available. Then, a Prin-
cipal Components Analysis is performed and an increasing function of the “dissipated
energy” (the volatility, in this case) is applied to the resulting factors.

The aim of this paper is to seek for a good method of modelling and forecasting
the Index of Market Shocks values. The basic idea is to find a hidden Markov chain
- neural net hybrid model that would provide, besides good data fitting and forecasts,
a state separation that describes the market behaviour in normal times and in crisis
periods.
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2 Autoregressive Hidden Markov Chain Models

Before giving the results, we make a brief description of the autoregressive models with
hidden Markov chains.

Financial series historics, taken over long periods, show important breaks in the
series behaviour. These breaks are due to several reasons, such as bankruptcies and
panics on the markets, changes in governments policies or wars. One way to model a
time series, while taking into account these “regime” changes, is to use hidden Markov
chains.

Let us consider (y;):cn the observed time series and let (z;):cz be a homogeneous
Markov chain defined by its state space E = {ei,...,en}, N € N* and the N x N
transition matrix A with a;; = P (2441 =@ | ¢ = j), 4,5 = 1,..., N. If we suppose,
with no loss of generality, that the chain state space is the canonical basis of R and we
note viy1 = ¢+1 — E (z441 | 2¢), then an autoregressive hidden Markov chain model
has the following form:

Tip1 = Azy + v
=Fy (Y1) + 0suyn
Yt+1 w1 \Yi—pt1 ZTe41°t+1

where y_,, defines the vector (y¢—pi1,.-,4t), Fropy € {Fey, -, Fey Jis an au-
toregressive function of order p, 0,,,, € {0, ,...,0cy }is @ real strictly positive num-
ber, (g¢):en are independent, identically distributed A (0, 1).

Hamilton’s study [3] on the GNP (Gross National Product) growth is one of the first
applications of the HMC models, where the series is supposed to behave as a mixture
of linear autoregressive models. But one can also consider nonlinear autoregressive
functions, such as the multilayer perceptrons and thus, we get the so called hybrid
MLP-HMC models (multilayer perceptron - hidden Markov chain models).

3 Research of aMLP-HMC Model

The data used in the analysis are daily values of the IMS, computed for the MSCI
(Morgan Stanley Capital International) World Equities Index, from June 25th, 1998
until July 25th, 2002 (1066 observations).

We are investigating whether the series is “regime changing” and whether we can
distinguish between different market behaviours by using a hybrid MLP-HMC model.
The linear model and the one hidden-layer perceptron that were onsidered in a prelim-
inary study showed that the significant lags were 1, 2, 4, 5 and 6. We fixed this input
vector and we let the number of experts and hidden units vary up to three.

In the end, two configurations were selected and further investigated, on the basis
of two criteria : the architecture with the smallest mean squared error and the one
with has the “best” transition matrix. The “best” transition matrix is chosen such that
its trace divided by its dimension is the closest to one and thus, for the corresponding
configuration, we have the most powerful segmentation of the series. These "empirical"
criteria were chosen because of the impossibility of using the usual likelihood ratio
test (one of the regularity conditions is not fulfilled, that is the nonsingularity of the
information matrix).
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3.1 Prediction Performance

The first step of this study was to compare the estimated MLP-HMC model with the
results of a linear ARMA and of a multi-layer perceptron.

After investigating all ARMA(p,q) models, for p and q in a specified range, an
AR(6) minimizing the BIC criterion was selected. The research of the multi-layer per-
ceptron is done using the REGRESS software [5], which performs an automatic re-
search through all possible configurations with a hidden layer. The “best” model is
chosen to minimize the BIC criterion and the “Statistical Stepwise” [1] algorithm is
used to eliminate the non significant connexions, once the “dominating” perceptron
was found. The final selected model has two hidden units, twelve parameters and the
input vector goes up to the sixth lag of time.

The summary in the next table shows that, for this series, there is no interest in con-
sidering MLP-HMC in forecasting purposes as there is no improvement when compared
to the linear model or to the perceptron. The global mean squared error is computed on
the whole series (1060 observations), while the training and test errors are computed
when splitting the series (800 values and, respectively, 260).

| Model | Globa MSE || Training MSE | Test MSE |
AR(6) 0.35714 0.358 0.34879
MLP(1,2.4,5,6) 0.34191 033089 | 034989
MLP-HMC (minMSE) |  0.32799 032796 | 037429
MLP-HMC (trans. mat) |  0.34789 035228 | 036626

Next, we will focus on studying the state separation of the series. Since the transi-
tion matrix does not suggest an interesting separation and since the table above implies
overfitting, we will not further investigate the model which minimizes the mean squared
error and we will only consider the models which maximize the trace of the transition
matrix. We chose to study a two-state model and a three-state model.

3.2 A Two State Moddl

For the two-state model, we have the following estimated transition matrix :

A— 0.90808 0.14065
~\ 0.09192 0.85935

The first expert has three hidden units with an associated noise variance of 0.43045,
while the second is a linear model (0 unit) with an associated variance of 0.05637.

In Figure 1, we plotted the conditional probabilities of the first expert for Russia,
Brazil and United States. We note that they are close to one when the market passes
through a crisis period.

The first example concerns the russian crisis in August 1998 for which the main
causes were the strong ruble devaluation and the country debt default, combined with
the echos of the Eastern Asia crisis in 1997. On the graphic, one can see that the peaks
correspond to the key moments of the crisis : August 11th, the stock market is at its
lowest level, while the short-term bond market crashes, August 17th, the Central Bank
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Figure 1: Conditional probabilities of the first expert (Russia, Brazil, U.S.)

widens the ruble/dollar exchange rate corridor and a 90-day moratorium on foreign
debt payments is announced, August 27th, Russia’s main foreign exchange market, the
MICEX, shuts down every currency trade.

The next example concerns the Brazilian crisis in January 1999, mainly due to the
important fiscal deficit and the high inflation rate. Here too, we see the decisive mo-
ments : January 7th, the governor of Brazil’s third biggest state announces a 90-day
moratorium on the debt payement to the federal government, January 13th, the finance
minister resignes and the real/dollar currency band is lowered, January 15th, the Central
Bank abandons its defense of the real, despite the holding of important foreign reserves.

Finally, the last example we propose here is the September 2001 crisis. Even be-
fore the terrorist attacks, the american economy showed signes of recession. On the
graphic, we see the two moments : September 6th, the stock prices drop due to the bad
news on the economy health, September 13th, the delayed opening of the markets after

September 11th.

3.3 A Three State M oddl

The research of a three state model having the most powerful segmentation of the series
selected an architecture with the following estimated transition matrix :
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. 0.88536 0.00457 0.03387
A= 0.00755 0.82081 0.11433
0.10701 0.17461 0.85181

The first expert is a three hidden units perceptron, while the two others have one
hidden unit. The associated estimated variances are 0.42687, 0.04422 and 0.275537.

Studying the results for this model is less obvious than for the two-state one. We
chose to describe the behaviour of the shock index subject to the three experts by a Ko-
honen map classification. We considered as input variables the IMS and the conditional
probabilities of the three perceptrons.
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Figure 2: Kohonen map for the three state model (IMS,el,e2,e3)
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In Figure 2, the first two graphics contain the variables means (normalized values) in
the clusters, which are homogeneous. We see that the high values of the index (strongly
agitated periods on the markets) are associated with the first expert, while the small
ones correspond to the second one, and this opposition is obvious on the map. As
for the intermediary values of the index, we may expect them to go with the third
experts. This is only partially true : we have, indeed, mean values of the index for
which the conditional probability of the third expert is the largest, but also cases of
mixture between the first and the third or between the second and the third expert.

In Figure 3 and 4 we have the results of an hierarchical classification performed
on the map. If we keep three clusters, we note that the index values evoluate through
clusters, from small to high values, the first and the last cluster are homogeneous and
correspond, respectively, to calm periods and to crisis moments. The middle cluster is
less homogeneous because it integrates the intermediate values that are associated to the
third expert, but to the mixtures of experts mentioned above as well. This is even more
obvious if we cut the classification tree at five clusters : we do not change the first and
the last cluster, but the middle one is splitted according to different expert combination.

An immediate application of the Kohonen classification would be constructing a
portfolio selection strategy, by identifying the calm periods and the turbulences on the
values of the computed IMS.
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Figure 3: Clustering of the Kohonen map in three clusters

Figure 4: Clustering of the Kohonen map in five cluster

4 Conclusion

Using a hidden Markov chain model for this kind of financial series does not improve
the prediction results obtained with classical linear or non-linear models. The interest
in using them is related to the state separation they provide. Thus, one may, on one
hand, identify key dates in market evolution and, on the other hand, derive strategies for
portfolio selection using the experts conditional probabilities and the index values.
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