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Abstract. We consider the problem of choosing multiple hyperparam-
eters for support vector machines. We present a novel, general approach
using an evolution strategy (ES) to determine the kernel from a param-
eterized kernel space and to control the regularization. We demonstrate
on benchmark datasets that the ES improves the results achieved by
grid search and can handle much more kernel parameters. In particu-
lar, we optimize generalized Gaussian kernels with arbitrary scaling and
rotation.

1 Introduction

Support vector machines (SVMs, e.g., [3]) are learning machines based on two
key elements: a general purpose linear learning algorithm and a problem spe-
cific kernel that computes the inner product of input data points in a feature
space. The choice of the kernel function is the crucial step in handling a learn-
ing task with an SVM. For example, it is important to achieve a distribution
of the data in the feature space that reflects the affiliation to the class labels.
Often a parameterized family of kernel functions is considered and the problem
is to find an appropriate parameter vector for the given problem. In case of
non-separable data one also has to choose a regularization parameter, which
controls the trade-off between minimizing the training error and the complexity
of the decision function. The kernel parameters together with the regularization
parameter are called the hyperparameters of the SVM.

In practice the hyperparameters are usually determined by grid search.
That is, the hyperparameters are varied with a fixed step-size through a wide
range of values and the performance of every combination is assessed using some
performance measure. Because of the computational complexity, grid search
is only suitable for the adjustment of very few parameters. Perhaps the most
elaborate systematic technique for choosing multiple hyperparameters are gra-
dient descent methods [2, 4]. These algorithms iterate the following procedure:
The SVM is trained using the current hyperparameter vector, the gradient of
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some generalization error bound w.r.t. the hyperparameters is calculated, and
a step is performed in the parameter space based on this gradient. However,
this approach has some significant drawbacks. The kernel function has to be
differentiable, which excludes for example string kernels. The score function
for assessing the performance of the hyperparameters (or at least an accurate
approximation of this function) also has to be differentiable with respect to ker-
nel and regularization parameters, which excludes reasonable measures such as
the number of support vectors. In [2, Sec. 6.2] separability of the dataset is as-
sumed when computing the derivative, which is a very restrictive assumption.
Finally, iterative gradient-based algorithms, which usually rely on smoothed
approximations of a score function, do not ensure that the search direction is
exactly the gradient of the original, often discontinuous generalization perfor-
mance measure.

We propose a method for hyperparameter selection that does not suffer from
the limitations described above, namely using the covariance matrix adaptation
evolution strategy (CMA-ES, [5]) to search for an appropriate hyperparameter
vector. The fitness function that is optimized directly corresponds to some
generalization performance measure. We apply our method to tuning Gaussian
kernels, where not only the scaling but also the orientation is adapted.

We give a short description of SVMs in Section 2 and of the CMA-ES in
Section 3. The parameterization of general Gaussian kernels is introduced in
Section 4. In Section 5 we present some experimental results.

2 Support Vector Machines

We consider L1-norm soft margin SVMs for the discrimination of two classes.
Let (xi, yi), 1 ≤ i ≤ �, be the training examples, where yi ∈ {−1, 1} is the label
associated with input pattern xi ∈ X . The main idea of SVMs is to map the
input vectors to a feature space F and to classify the transformed data by a
linear function. The transformation φ : X → F is implicitly done by a kernel
K : X × X → �, which computes an inner product in the feature space, i.e.,
K(xi, xj) = 〈φ(xi), φ(xj)〉. The linear function for classification in the feature
space is chosen according to a generalization error bound considering a target
margin and the margin slack vector, i.e., the amounts by which individual
training patterns fail to meet that margin (cf. [3]). This leads to the SVM
decision function f(x) = sign

(∑�
i=1 yiα

∗
i K(xi, x) + b

)
, where the coefficients

α∗
i are the solution of the following quadratic optimization problem: Maximize

W (α) =
∑�

i=1 αi − 1
2

∑�
i,j=1 yiyjαiαjK(xi, xj) subject to

∑�
i=1 αiyi = 0 and

0 ≤ αi ≤ C for i = 1, . . . , �. The optimal value for b can then be computed
based on the solution α∗. The vectors xi with αi > 0 are called support vectors.
The regularization parameter C controls the trade-off between maximizing the
target margin and minimizing the L1-norm of the margin slack vector of the
training data.
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3 Evolution Strategies

Evolution strategies (ES, [1]) are one of the main branches of evolutionary
algorithms, i.e., a class of iterative, direct, randomized optimization methods
mimicking principles of neo-Darwinian evolution theory. We use the highly
efficient CMA-ES [5]. A set of µ individuals that form the parent population
is maintained. Each individual has a genotype that encodes a candidate solu-
tion for the optimization problem at hand, here an m-dimensional real-valued
object variable vector. The fitness of an individual is equal to the objective
function value at the point in the search space it represents. In each iteration
of the algorithm, λ > µ new individuals, the offspring, are generated by par-
tially stochastic variations of parent individuals. The fitness of the offspring
is computed and the µ best of the offspring form the next parent population.
This loop of variation and selection is repeated until a termination criterion is
met.

The object variables are altered by global intermediate recombination and
Gaussian mutation. That is, the genotypes g

(t)
k of the offspring k = 1, . . . , λ

created in iteration t are given by g
(t)
k = 〈g̃〉(t) + ξ

(t)
k , where 〈g̃〉(t) is the cen-

ter of mass of the parent population in iteration t and the ξ
(t)
k ∼ N (0, C(t))

are independent realizations of an m-dimensional normally distributed random
vector with zero mean and covariance matrix C(t). The matrix C(t) is updated
online using the covariance matrix adaptation method (CMA). The key idea
of the CMA is to alter the mutation distribution in a deterministic way such
that the probability to reproduce steps in the search space that led to the ac-
tual population—i.e., produced offspring that were selected—is increased. The
search path of the population over the past generations is taken into account,
where the influence of previous steps decays exponentially. The CMA does not
only adjust the mutation strengths in m directions, but also detects correla-
tions between object variables. Thereby, it becomes invariant under orthogonal
transformations of the search space (apart from the initialization).

4 Encoding General Gaussian Kernels

We consider general Gaussian kernels KA(x, z) = e−(x−z)T A(x−z), where A is
a symmetric positive definite matrix. We use three different parameterizations
of these kernels. Firstly, there are the ordinary Gaussian kernels KτI , where I
is the unit matrix and τ > 0 the only adjustable parameter. Secondly, we allow
independent scalings of the components of the input vectors and consider the
kernel family KD, where D is a diagonal matrix with positive entries. Finally,
we allow arbitrary symmetric positive definite matrices A, i.e., the input space
can be scaled and rotated. This kernel family is denoted simply by KA.

The individuals in the ES encode C and the kernel parameters, and the vari-
ation operators obey restrictions of parameters to �+ when necessary. How-
ever, when encoding KA kernels, we have to ensure that after variation the
genotype still corresponds to a feasible (i.e., symmetric, positive definite) ma-
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trix. We use the fact that for any symmetric and positive definite n×n matrix
A there exists an orthogonal n × n matrix T and a diagonal n × n matrix D
with positive entries such that A = T T DT and

T =
n−1∏
i=1

n∏
j=i+1

R(αi,j) ,

see [9]. The n × n matrices R(αi,j) are elementary rotation matrices which
are equal to the unit matrix except for [R(αi,j)]ii = [R(αi,j)]jj = cosαij and
[R(αi,j)]ji = − [R(αi,j)]ij = sin αij . Each genotype encodes the n+(n2 −n)/2
parameters (d1, . . . , dn, α1,2, α1,3, . . . , α1,n, α2,3, α2,4, . . . , α2,n, . . . , αn−1,n), and
we set D = diag(|d1|, . . . , |dn|).

5 Experimental Evaluation

For the evaluation of our hyperparameter optimization method we used the
common medical benchmark datasets Breast-Cancer, Diabetes, Heart, and Thy-
roid with input dimension n equal to 9, 8, 13, and 5, respectively, preprocessed
and partitioned as in [8]. Each component of the input data is normalized to
zero mean and unit standard deviation. There are 100 partitions of each dataset
into disjoint training and test sets. In [7], appropriate SVM hyperparameters
for the Gaussian kernel KτI were determined using a two-stage grid search and
the following score function: For each hyperparameter combination, five SVMs
are built using the training sets of the first five data partitions and the average
of the classification rates on the corresponding five test sets determines the
score value (Test-5) of this parameter vector. The hyperparameter vector with
the best score is selected and its performance is measured by calculating the
score function using all 100 partitions (Test-100). We used this scenario as a
basis for our evolutionary hyperparameter adaptation approach: We took the
results of the grid search performed in [7] as initial values for the CMA-ES and
used the score function described above to determine the fitness. The SVMs
were trained using SVMlight [6]. The population sizes of the CMA-ES were cho-
sen according to the heuristics λ = max(5, min(m, 4+�3 lnm�)) and µ = �λ/4�
given in [5], where m is the number of object variables.

For each benchmark and each of the three kernel families, 20 evolutionary
optimizations over 250 generations were performed. In each trial, the hyperpa-
rameter vector with the best fitness value (Test-5) was regarded as the solution.
The performance of each solution was assessed by calculating the score using
all 100 data partitions (Test-100), see Table 1.

We compared the start values of Test-5 and Test-100 with the results ob-
tained by the ES. Except for a few cases, we achieved significantly (t-test,
p < 0.05) better results by evolutionary optimization. The ES could even im-
prove the performance when adapting KτI in some cases, although the initial
values were already tuned for KτI by intensive grid search. The scaled kernels
KD as well as the scaled and rotated kernels KA led to significantly (p < 0.05)
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Data Kernel t̂ λ Test-5 Test-100 #SV-100

init 73.77 74.51 113.52
Kτ� 10 ± 64 5 74.00 ± 0.35� 74.56 ± 0.19� 114.58 ± 4.34

C
K� 83 ± 185 10 76.91 ± 4.19� 75.17 ± 2.84� 113.10 ± 3.89�

K� 179 ± 258 15 77.47 ± 2.32� 75.38 ± 1.85� 112.70 ± 2.97�

init 76.34 76.67 247.83
Kτ� 102 ± 340 5 76.84 ± 0.47� 76.67 ± 0.16 251.63 ± 35.49

D
K� 149 ± 244 9 78.10 ± 0.95� 76.88 ± 1.1� 239.31 ± 12.38�

K� 181 ± 243 14 78.07 ± 0.82� 76.73 ± 1.39 235.73 ± 14.95�

init 83.80 84.79 106.33
Kτ� 10 ± 75 5 83.81 ± 0.19 84.74 ± 0.19 103.37 ± 4.23�

H
K� 97 ± 180 11 85.71 ± 1.86� 84.98 ± 1.59� 76.52 ± 9.15�

K� 153 ± 206 17 85.86 ± 0.75� 85.14 ± 1.46� 75.51 ± 6.53�

init 96.27 95.83 16.36
Kτ� 3 ± 22 5 96.56 ± 0.36� 95.74 ± 0.86 15.99 ± 4.39

T
K� 16 ± 151 6 97.29 ± 0.43� 96.01 ± 0.17� 15.46 ± 0.54�

K� 5 ± 14 12 97.33 ± 0� 96.01 ± 0.23� 15.42 ± 0.79�

Table 1: Results averaged over 20 trials ± standard deviations. The first
column specifies the benchmark: Breast-Cancer (C), Diabetes (D), Heart (H),
and Thyroid (T). The second column indicates whether the results refer to the
initial grid search values (init, [7]) or to the evolutionary optimized kernels
KτI , KD, or KA. The t̂ values are the generations needed to evolve the final
solutions and λ is the number of offspring per generation. The percentages of
correctly classified patterns on the 5 and 100 test sets are given by Test-5 and
Test-100. The average numbers of support vectors over the 100 training sets
is #SV-100. Results statistically significantly better compared to grid-search
(init) are marked with � (two-sided t-test, p < 0.05).

better results compared to the ordinary Gaussian kernel KτI (except for Dia-
betes: Test-100 with kernel KA). The major improvement was already achieved
by allowing scaling. However, in one case (Breast-Cancer: Test-5) the kernel
KA with the additional rotation parameters gave significantly (p < 0.05) bet-
ter results than just scaling. There is another remarkable advantage of the
scaled kernel KD and the scaled and rotated kernel KA: The number of sup-
port vectors decreases. Evolutionary adaptation of kernels KD and KA led
to SVMs having significantly less support vectors compared to the ordinary
kernel KτI optimized by the ES or grid-search, see Table 1. Again, in one
case (Diabetes) the kernel KA with additional rotation parameters yielded a
significantly (p < 0.05) better result than just scaling.

6 Conclusions

The CMA evolution strategy is a powerful, general method for SVM hyperpa-
rameter selection. It can handle a large number of kernel parameters and does
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neither require differentiable kernels and model selection criteria nor separabil-
ity of the data. As typical selection criteria exhibit multiple local optima [4], we
claim that evolutionary optimization is generally better suited for SVM model
selection than gradient-based methods. We demonstrated that extended Gaus-
sian kernels with scaling and rotating parameters can lead to a significantly
better performance than standard Gaussian kernels. To our knowledge, for
the first time a method that adapts the orientation of Gaussian kernels—i.e.,
that can detect correlations in the input data space relevant for the kernel ma-
chine—was presented. Our experiments show that by increasing the flexibility
of the kernels the number of support vectors can be reduced. Future work will
address other, especially non-differentiable kernels and optimization criteria.
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