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Abstract

Disruption in a Tokamak reactor is a sudden loss of confinement that can cause
a damage of the machine walls and support structures. In this paper, we
propose the use of the Fuzzy Time Series (FTS) approach for anticipating the
onset of disruption in Tokamaks. Two-Factors Fuzzy Time Series models will
be shown to be advantageously used for making prediction of the disruption’s
onset in Joint European Torus (JET) machine. The use of soft computing
technique is suggested by the very nature of the variables involved and by the
consideration that a single time series of a physical variable is hardly
representative of the whole kind of disruptions experimentally observed.

1. Introduction

The development and engineering of the basic concept of magnetic confinement has
potentially allowed the generation of nuclear fusion energy. Tokamak machines are
designed in research centers in order to facilitate energy confinement experiments
where the confinement time of the plasma plays the relevant role. The efficiency of
the confinement and various instabilities strongly limit the operational regime of
Tokamak machines till the falling to zero of the plasma current [1]. During the sudden
loss of confinement and transfer of plasma energy, plasma collapses in an
uncontrollable way, thereby generating mechanical forces and heat loads which
threaten the structural integrity of surrounding structures and vacuum vessel
components. The early prediction of the deterioration of the confinement magnetic
thus represents an important step to anticipate the onset of a disruptive event during
the evolution of a plasma discharge in the experimental machine. Success in
developing a reliable alarm system for disruption anticipation would have important
implications both for the design of future reactors (e.g., ITER), and for the
developments of short term strategies to either limit or abort an impending disruption.
In recent years, signal processors based on Neural Networks have been exploited as
prediction systems, with the aim of predicting the occurrence of disruptions
sufficiently far in advance for protecting procedures to be switched on [2], [3].
Recently, we proposed the use of fuzzy inferences and neuro-fuzzy inferences
systems to cope with the disruption prediction problem in experimental Tokamak
reactors, namely ASDEX-Upgrade [4], [5], [6], by deciding, among a set of physical
observables, which are positively correlated with the time to a disruption. The aim of
the present study is to develop a processing system that should be able to predict
correctly the “time-to-disruption™ (#td) indirectly through the tracking of a related
measurable physical quantity. The processing system will make use of the Fuzzy
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Time Series (FTSs) approach [7], [8]. In particular, we propose the use of the two
factors time-varying fuzzy time series model to deal with the forecasting problem. We
exploit here two algorithms, typically referred to as B and B*, in which the prediction
of the main factor, a variable referred to as Mode Lock, strongly linearly correlated
with the #td, which is not directly measurable by a physical sensor, is assisted by a
suitable secondary factor, namely, a judiciously selected magnetic parameter of the
plasma, also easily measurable. The rest of this paper is organized as follows: In the
next Section, we describe the features of the available database, that refers to the JET
machine. In Section III, we briefly review the fuzzy time series concept. Section IV
describes the way how the algorithms can be applied to the disruption prediction
problem. The achieved results are reported in Section 5. The paper ends with Section
6 which contains the main conclusions of the work.

2. The JET Experimental Database

A disruption oriented database of JET discharges has been set up by the JET Team. In
this database, a set of measurements monitoring the plasma shots are stored. A large
number of them were analysed with the purpose to find the technical causes, the
precursors and the physical mechanisms of disruptions. The analysed files derives
from many years of experimental activity carried out at the Culham Center,
Oxfordshire, London (United Kingdom). The database was built starting from the
dynamics of a disruption in the zone of flat-top of the plasma current in which the
plasma is monitored to obtain a constant plasma current (IPLA) and a stable
confinement in terms of shape and position. The choice of the variables to be used as
predictors among the ones available in the database is always the result of a
compromise between the physical availability of measurements and reliability of the
related sensors and the peculiarities of the processing model (kind of NNs) carried out
in previous works. In the case of missing data, some kind of filtering is used in order
to complete the time series. The interval of observation of the variables was limited to
the time interval of [td-440ms; td-40ms] according to some physical insight; the left
40ms were omitted as not being relevant, since there is no sufficient time left to
control the shot. The time of sampling is 20ms and 20 samples for each channel have
been used. In order to test the null hypothesis and verify the percent of false positive
occurring, we have considered 1167 shots without disruption, and 701 disruptive
shots, related to experiments carried out between 1997 and 1999. Within the database,
a record distinguishes the kind of shot: the outputs of the network are labelled by
means of vtargetTS for training database, viargetVS for validation database and
vtargetTest for testing database. The outputs were identified by considering that, in
correspondence of a shot without disruption, we have a series of 20 zeros (non
disruptive shot). If the shot is a disruptive one, the series of 20 values is a set of
numbers in the range (0,1) and thus a sigmoidal function is used to represent the risk
of disruption. In the present approach, the series of 20 numbers is reconstructed on-
line after the prediction of the Mode Lock variable.

3. Fuzzy Time Series: A Bird’s Eye Overview
In a time series representing the observed values of a dynamic process, the reading is
represented by means of crisp numbers. In contrast, in a fuzzy time series the
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observed values of a dynamic process are represented by means of linguistic values
[8]. To understand how the FTS works, let us consider a subset of real numbers K?),
(=0, 1, 2, ...), referred to as the Universe of Discorse (UoD), X, and let us assume
H;(?) are the fuzzy sets identified by means of suitable membership functions (defined

on the UoD to range into [0, 1]), defined on K(?). Assume that A(¢) is a collection of
Hi(?); then, A(t) is a fuzzy time series of K(¢). A(1) is a function of time #, and 1;(?) are

linguistic values of A(?), where u;t) are represented by fuzzy sets. If A() is

generated by A(#-1), then, this relationship can be represented by:

A@t)=A(t-1) °R(t, t-1)
where R(t, t-1) is a fuzzy relationship between A(z) and A(t-1). If A(¢) indicates the
main factor (Mode Lock, correlated to the #td) of our prediction problem, at the same
way, a novel fuzzy time series, H(¢), is related to the secondary factor (another
physical quantity, the Plasma Density). Both A(f) and H(¢) deal with the prediction
problem by means of a sort of two factors fuzzy time series.

4. Fuzzy Time Series Model for Disruption Anticipation

In [4], we have proposed a neuro-fuzzy model for the prediction of disruption that
exploited a single time series. As anticipated in the previous sections, rather than
using the ftd time series, we exploit here the Mode Lock variable to predict in due
time the incoming of disruption. Nevertheless, a temporal event detected in a single
time series can be affected by several factors. In our case, the prediction of #d
depends on many factors which could be only inferred by the evolution of the reading
of sampled magnetic measurements, carried out by suitable sensors located along the
vacuum vessel contour. In this Section, we firstly describe the B algorithm [7].

The B algorithm starts by the definition of the UoD for both factors. In
particular, regarding the Mode Lock (main factor), we determinte its variations
between any two continuous data computing the maximum decrease D and the
maximum increase /. The UoD X for Mode Lock is defined as follows
X = [D - &, 1+ ] Where € is a suitable positive real value. X" has been divided into n

disjointed intervals x;.

In this paper, we have considered seven partitions for X, however, for other
applications a different number of partitions can be advantageously taken into
account. For each interval x;, we associate a linguistic label L; represented by fuzzy
sets whose membership functions w, (,) =l,....h Jj=l,...,n

The Universe of Discourse, UoD, Y of the secondary factor is defined as:

Y= [min (Plasma Density ), max (Plasma Density )] ,
where min(Plasma Density) and max(Plasma Density) are the minimum and
maximum of the possible values for secondary factor. We divide Y into » disjointed
intervals y; (the same number of partitions for X, but additional partitions can be
introduced). As for the main factor, to each interval y; of the secondary factor we
associate a fuzzy set B; whose membership functions are N (x | ) =1,..., h j=1,...,

n. Note that, for each interval x; and y, 4, (x]) and 4, (x]) are constant values

selected by qualitative inspection of database. The next step of the procedure is the
fuzzification of the data. In particular, if the variation o of the Mode Lock belongs to
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the interval x;, we know that the maximum membership value of L, occurred at x;,
then the fuzzified variation of d'is L;. The same procedure can be exploited in order to
fuzzify the secondary factor. To predict the Mode Lock at time ¢, it is imperative to
choose the temporal windows w in order to get the criterion vector C(¢) and the
operation matrix O"(z) at time ¢ defined in (1) and (2), where a(#-1) is the fuzzified
variation of the Mode Lock between time -1 and #-2; n is the number of the
elements of X (UoD for #d); C;are crisp values (0<C<1 and 1<j<n) and Oy are crisp
values (0<O;<1, 1<isw-1, 15/<n).

C()=alt-1)=[c, C,-C,] (1

a(t - 2) on O, - O,

o= V| O O O @

at-w)| |Ouy Ourp = Opia
Once the Mode Lock has been properly processed, it needs to treat the secondary
factory by means of the definition of the secondary factory vector S(¢) defined in (3),
where S(7) is the secondary factor vector at time #; A(z-1) is the fuzzified data of
secondary factory and # is the number of the elements of .X;

S()=hz-1)=[S, S, -8, (€)
The next step of the procedure is to define the relationship between the two factors.
Chen et al., [7], proposed a model of fuzzy relationship between the criterion vector,

C(), the operation matrix, O"(¢), and the secondary factor vector S(f), defined in (4)
and (5):

R(t)=0"(t)®S(t)® C(r) Q)
011><S1><Cl 012><S2><Cz OMXSMXCn Ru Rlz Rln
021><S|><C| 022><S2><Cz OZnXSnXCn Rz] Rzz Rz»

R(t): : : : - : : : (®)]

Qw—l)l XS] XCI wal)z XSz XCz wal)n XSn XCn R(w4)1 &W—I)Z &wfl)n
Once R(?) is computed, the fuzzified variation of A(?), a(f), between time ¢ and time t-
1, is calculate as reported in (6):

max(R, 1> Ry ,...,R(w,l)l )
a(t)z m"dX(RmRzz""’Rw—w2 (©)
...max(R R2n,...,R(w71)n)

1n>
The last step of the B algorithm is to defuzzify the predicted variations of Mode_ Lock.
If the membership value of the predicted variation is 0, then the predicted variation is
0; else, if the maximum membership value of the fuzzified predicted variation
occurred at x;, then the predicted variation is the midpoint of x;. In case the maximum
membership value of the predicted variation occurred at several intervals, then the
predicted variation is the average of their midpoints.

B* Algorithm
In [7], Chen et al. proposed a novel version of the previously described B Algorithm,
referred to as B* Algorithm, that takes into account the further enhancement of the
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predicting accuracy and to reduce the errors. The modification is only related to the
defuzzification procedure. In other words, by means of an a-significance
level (a(t))a of the fuzzified predicted variation a(¢) defined in (12), where a(#) is the

fuzzified predicted variation and oe€[0,1], we can achieve a more precise
defuzzification,

a(t)=[al a2 “'an] (a(t))a =[ala aZa ana (13)
If fiza, we fix fi~f; else if fi<or, then fi=0. If the membership values of (4(;)), are all
0, then the prediction variation is 0; else if the membership value of (a(t))a have only

one maximum falling into x;, then the predicted variation is its midpoint. In case the
membership values of (a(¢)), occurred at several intervals, , the predicted variation is

the average of their midpoints. Naturally, the prediction data is equal to the predicted
variation plus the actual data. By using the Matlab® language we have implemented
the so-called Algorithm B and B*.

The secondary factor has been selected though the fuzzy curve approach: the
result of the selection and ranking procedure was that the Plasma Density quantity is
the most suitable to be used at this scope.

5. Performance of the Model

The aim of a disruption prediction system is to design a processor capable of
predicting the onset of a disruption sufficiently in advance for intervention using a
control action. This paper’s approach was to use the B algorithm to solve the
anticipation problem, while the B* algorithm was just used as a cross-check
technique. The main result in using the B* algorithm with respect to the B algorithm
is a slight improvement of accuracy to be paid by a corresponding increase in the
computational burden of the procedure implemented.

The used detection criterion is as follows: once the Mode Lock value is
greater than a fixed threshold (0.2 T/A), the disruption is incoming. Figure 1 shows
the results achieved for the prediction of the Mode Lock 400ms in advance (a window
slice of w=3 was used, after a sensitivity analysis has been carried out, as reported in
Table 1).

The performance of the B algorithm as predictor of disruptive events can be
resumed in the following statements:

- the probability of correctly switching on an alarm in the range (w=3) before the
disruption is in the order of 90%;

- a limited number of false alarms were detected, while the number of false positive is
very limited within the test and validation databases;

- the fuzzy time series model has been applied to both simple problems of prediction
with single shots and to small group of shots, in order to assess the robustness of the
procedure. The results can be considered more than encouraging; in fact, it is possible
to predict the disruption with a time-lag of 15ms, with the accuracy reported in Table
1 in terms of root mean squared error.

6. Conclusion
In this paper, a novel soft computing approach has been exploited for solving the
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problem of early prediction of disruptions in JET Machine. As seen, from the
analysis of the achieved results, it is possible to say that the onset of a disruption is
predictable within a time interval of interest. The comparison with the obtained results
in [4] (prediction of disruptions by means of a single time series), allows us to claim
that the use of a two-factors model may improve the performance. In the future, the
extension of the two-factors time series models into multi-factors time series models
is hoped.
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Figure 1. Prediction of Mode Lock for w=3

Window size “w” RMSE [T/A]
1 —
2 0.083
3 0.085
4 0.0853
5 0.091

Table 1: Sensitivity of the prediction accuracy to the selected window size
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