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Abstract. In this paper we describe a neural network-based method aimed at 
automatically calibrating the detector module contained in a scanner for a high-
resolution positron emission tomography (PET) system for small animals. The 
detector module is composed of crystal elements, arranged in a regular matrix 
and sensitive to gamma rays emitted by a radioactive source. The crystal matrix 
is optically coupled to a position-sensitive photo-multiplier tube, which 
reconstructs the original image. Calibration, required to cope with spatial 
distortions introduced by the optical system, consists of a segmentation process 
of the image produced after the photo-multiplier tube into a fixed number of 
areas. The purpose of this segmentation is to map each pixel of the perceived 
image onto the pertinent crystal, which was actually struck by the gamma ray 
emitted by the radioactive source. 
 
 

1. Introduction 
 
Positron emission tomography (PET) is a nuclear medicine technique which allows 
localizing with high precision, within the brain or other body organs, a substance, 
previously injected into the patient’s body and marked with a radioisotope emitting 
positrons [1]. When positrons collide with electrons, gamma ray photons are 
produced. More precisely, each nuclear reaction gives origin to two gamma rays 
which are paired so as to move away in exactly opposite directions. A (frequently 
low) percentage of these pairs of gamma rays are sensed simultaneously by two 
detectors, which, being placed on opposite sides, can intercept the flight line of such 
pair. When hit by gamma rays, the two detectors, usually based on scintillator 
crystals, emit light photons which are captured and amplified by a position-sensitive 
photo-multiplier tube (PSPMT). Trough an appropriate decoding circuit, the photo-
multiplier establishes the coordinates of the source of each light photon. In this way, 
variations in radiation intensity and in spatial location at point sources in the body 
activate the detector module that maps the radiation intensity in the X-Y space to 
create an image. 
PET scanners allow following the path of the radioisotope throughout the body and to 
examine the organ where a particular radioisotope may concentrate preferentially. Of 
course, high sensitivity is necessary both to image radiolabelled substances, which are 
distributed in live subjects in very low quantities, and to image fast dynamic 
processes in vivo. A number of different approaches to achieving high sensitivity have 
been employed, including the development of novel scintillator crystals. In particular, 
YAP:Ce (yttrium aluminium perovskite activated by cerium) scintillators, providing 
good resolution and sensitivity, and having very low energy secondary X-ray 
emissions, are particularly suitable for this kind of imagining applications.  
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PET scanners are more and more frequently used in neurology, cardiology and 
tumour detection in various parts of the human body. High-resolution PET scanners 
have also been developed for imaging small laboratory animals, such as rats and mice, 
as an important tool in biomedical research for drug discovery and development, and 
evaluation of therapeutic efficacy in small animal models of human disease [2]. 
In this paper, we refer to a positron emission tomograph for small animals. The 
tomograph includes a four-head detector module consisting of four matrices of 400 
YAP:Ce crystals optically coupled to as many PSPMTs.  
One of the problems encountered when using PET systems, especially in scanners 
employed in experiments on small animals, comes from various kinds of distortions 
of the final image mainly due to irregularities of the optical-electronic system. In fact, 
an appropriate calibration of the resulting image is necessary.  
Essentially, calibration aims to associate each pixel of the image produced by a 
detector module with the crystal influencing that pixel. The calibration process is 
operated on the image obtained by illuminating each detector module with a uniform 
and parallel beam of gamma rays for a period of time sufficient to allow high-
resolution image acquisition. Being the intensity level of the produced image 
proportional to the number of gamma rays that hit the corresponding crystal, the 
identification of the region of influence of each crystal can be guided by the search of 
intensity peaks in the image. The calibration process is quite often performed through 
direct intervention by the user resulting in a highly time-consuming operation. 
Otherwise, procedures for automatic calibration have also been developed (e.g., a 
calibration algorithm based on the watershed transform is presented in [3]), but they 
usually rely on the interactive correction of the results by the user.  
In this paper, we present a neural network-based method for automatic calibration of 
PET detector modules without requiring any user’s intervention. The method exploits 
a self-organizing map (SOM) [4] which retains the main characteristics of the SOM 
standard model though introducing a new concept of neighbourhood and a further, 
purposely-defined learning phase. In the following, we describe the key features of 
the method and present experimental results. 
 
 
2. The method 
 
In self-organizing maps, neurons learn to recognize both the distribution and the 
topology of the input vectors they are trained on. The neurons are arranged originally 
in physical positions in the one- or two-dimensional map according to a specific 
topology that defines which neurons are in fact neighbours of the winning neuron. 
The neighbourhood function may take different forms, such as squared or hexagonal. 
During learning, both the winning neuron and all neurons within a specified 
neighbourhood are updated by means of the Kohonen learning rule, which moves the 
weights of such neurons closer to the input vector. The weights are altered 
proportional to the learning rate. Both the learning rate and the neighbourhood size 
are appropriately decreased during training. Typically, the neighbourhood is selected 
fairly wide in the beginning and then permitted to shrink with time. Similarly, the 
learning rate parameter starts with a value close to unity and then decreases gradually. 
Two successive distinct learning phases can be distinguished: the ordering phase, 
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during which the topological ordering of the weight vectors takes place, and the 
tuning (or convergence) phase, during which fine tuning of the computational map is 
achieved by maintaining a fixed small neighbourhood and a slowly decreasing 
learning rate, without altering the ordering learned in the preceding phase.  
From the previous simple review of the main characteristics of self-organizing maps, 
it turns out that we need to make appropriate changes to the standard model of self-
organizing map in order to reach our purpose. Indeed, each detector module of the 
PET system we refer to consists of a squared matrix made of 20x20 crystals sensitive 
to gamma rays. Owing to measurement noise, a not perfectly linear behaviour of the 
crystals, possible border effects, and non-uniform sensitivity of the multiplier tubes, 
the resulting image looks like a geometrically distorted squared grid. Therefore, we 
basically aim to rebuild the grid structure of the detector crystal matrix by identifying 
cluster centres and linking these centres in orderly way according to a fixed 
connection topology. Neurons in the final map must be spaced out in a fairly uniform 
way consistently with the geometric distortions present in the produced image and 
independently of the difference in the intensity levels associated with the peaks. 
To this aim, we introduce an intermediate phase, called grid ordering phase, between 
the standard ordering and tuning phases. During this phase, the learning procedure 
tries to allocate the neuron grid on the input vectors by heavily exploiting the 
information pertinent to the expected grid structure. The basic idea is to define a more 
specific concept of neighbourhood which takes into account the geometric nature of 
the neural grid, and to appropriately update the weights of the winner and the neurons 
inside this specific neighbourhood. Generally, the neighbourhood function is taken to 
include neighbours in a (typically squared) region, called activity bubble, around the 
winning neuron. During the grid ordering phase, the neighbourhood of the winner 
consists of the neurons that are within a certain distance from the winner and at the 
same time on either the same row (coordinate X) or the same column (coordinate Y) 
of the neural grid as the winner. This choice aims to assign a high weight to the grid 
topology originally associated with the centres of the intensity peaks.  
 
 
3. The learning process 
 
The first learning phase is the ordering phase, which maps the weight vectors so as to 
loosely represent the distribution surface in the input space: the aim is to approximate 
the shape of the image, previously compensated and filtered. The weight map, 
initially characterized by uniform distribution, is warped owing to the neuron 
attraction by the pixels presented to the network. The learning rate varies linearly 
between two user-specified values; the same holds for the neighbourhood distance. 
The following learning phase is the grid ordering phase, which stems from a 
mechanical view of the clustering problem. Assuming that a fixed-mass small ball is 
associated with each neuron, each ball is linked to the adjacent balls through a spring 
system along the two dimensions X and Y. Each ball, except for those on the edges, 
has four immediate neighbouring balls. The problem of finding the intensity peak 
centres can be transposed into the complementary approach of interpreting high 
intensity levels as valleys: a pixel with a high intensity value corresponds to a deep 
point in the valley. Our aim is therefore to make the 400 balls fall into the best 400 
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valleys detectable in the input surface. 
Of course, the fact that springs are present only on the X and Y directions, and not on 
diagonal trajectories, stresses the importance of the grid morphology of the expected 
result. When a ball (actually, a neuron) is attracted by a pixel relative to a surface 
depression (actually, a cluster), this ball not only tries to occupy the valley central 
position but, through the spring system, applies an appropriate force to the adjacent 
balls. More precisely, let Dx and Dy be, respectively, the horizontal and vertical 
displacements of the winning ball to get closer to the training pixel. All the balls in 
the winner’s current neighbourhood are moved according to the following rule: each 
ball on the same row as the winner is moved in the same direction as the winner along 
the horizontal line, this shift is proportional to Dx (called primary horizontal factor) 
and inversely proportional to the distance between the ball and the winner; the same 
occurs for the vertical direction. The primary movement, which is either horizontal or 
vertical depending on the fact that the neighbouring ball is on the same row or column 
as the winner, is accompanied by a secondary movement along the orthogonal 
direction; this secondary movement is originated from the grid settling following the 
movement of the winner in both the horizontal and vertical directions. The secondary 
movement, made by a ball along the direction orthogonal to that of its primary 
movement, is proportional to a secondary (horizontal or vertical) factor, which is 
smaller than the corresponding primary factor, and inversely proportional to the 
distance between the ball and the winner. A substantial difference between primary 
and secondary movements is the shift direction: whereas a primary movement causes 
a shift of all the neighbouring balls in the same direction as that of the winner along 
that dimension, a secondary movement represents the attractive force by the training 
pixel and consequently the neighbouring balls move towards the winner. In this way, 
e.g., a horizontal spring has a primary effect along the horizontal direction and a 
secondary effect along the vertical direction. 
In the grid ordering phase, the weights of the winner are updated proportional to the 
current value of the learning rate while those of the neighbouring neurons are updated 
by summing the primary and secondary movements still proportional to the current 
learning rate. During the search for the best distribution it may happen that two balls 
are so close that they are attracted within the same valley. This has a negative effect 
on the cluster identification. We can avoid this problem by exploiting information 
about the average distances between adjacent balls. More precisely, we periodically 
calculate the average distances along the horizontal and vertical directions and check 
whether the distance between any two adjacent balls falls below a threshold which is 
a function of the average distances themselves. When this occurs, the two balls 
undergo an elastic collision which moves them away in opposite directions together 
with all the balls arranged along the direction involved in the collision. The 
information about the average distance between adjacent balls are also used to reveal 
situations in which two adjacent balls move away too far from each other along one 
direction. In this case, all the balls on the detected direction undergo an appropriate 
attractive force. 
The final learning phase is the tuning phase during which the neighbourhood of each 
neuron consists of the neuron itself: in practice, each input vector causes the updating 
of the winner’s weights only. On the other hand, the grid ordering phase has placed 
each neuron in the best influence zone with respect to the crystal matrix and the task 
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of the tuning phase is just a fine tuning of the search for the best centre to associate 
with the intensity peak present in that zone. 
 
 
4. Experiments and results 
 
We use a network with 400 neurons arranged in the form of a two-dimensional lattice 
with 20 rows and 20 columns. The network is trained with a two-dimensional input 
vector, whose elements represent the original image pixels normalized within the 
range [-1,1]. The initial synaptic weights are uniformly distributed within the two-
dimensional input space. The neighbourhood distance is the Manhattan distance.  
The input data consist of a 400*400 pixel image produced by the photo-multiplier 
tube. For each pixel, the intensity of the energy level is provided, which is 
proportional to the number of photons revealed during the exposition time to gamma 
rays. We carried out several experiments with both good-quality and low-quality 
images. In the former case, the image consists of well distinguished high-intensity 
peaks, whereas in the latter case, the image contains various kinds of distortions such 
as missing or fused peaks. An example of low-quality image is displayed in figure 
1(a), where brighter zones correspond to higher intensity levels. We can notice a wide 
range of intensity levels; further, not all peaks are well separated, and some of them, 
especially those close to the image edges, can be scarcely detected. In figure 1(b) the 
neural grid produced at the end of the ordering phase is placed on the original 
uncompensated and unfiltered image. The neurons are represented as white spots. 
Figure 1(c) shows the grid layout after the grid ordering phase. Finally, Figure 1(d) 
shows the grid resulting from the tuning phase. We can notice that, in spite of the 
distortions present in the original image, the self-organizing map is able to keep the 
lattice topology that characterizes the peak distribution. The results are excellent not 
only in identifying the internal peaks, but also those located at the edges of the image. 
The system was developed in Matlab 6.5. The three learning phases last 2, 120 and 20 
seconds, respectively, on average on an Intel Pentium 4, 3 GHz PC. 
 
 
5. Conclusions 
 
We have presented a SOM-based system for image calibration in a PET scanner used 
for experiments on small animals. Essentially, we build a mechanical model of the 
calibration system consisting of balls, associated with the neural network neurons, and 
springs arranged in a grid structure. The problem of identifying the image intensity 
peaks is transformed into a search for a ball distribution to 400 valleys, representing 
pixel clusters, on the surface made of the image pixels. During training, the balls, 
stimulated by the input pixels, start vibrating until a stable equilibrium point is 
reached. The final equilibrium corresponds to have each ball in the appropriate valley. 
Experimental results have shown high accuracy and effectiveness in identifying the 
crystal influencing each image pixel, low calibration time, and robustness against 
noise, spatial distortions and large variability in the intensity degrees of the pixels. 
The segmentation process is highly reliable both in the internal regions and on the 
borders of the images. Finally, no interactive correction by the user is required. 
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Fig. 1. (a) Original image; (b) Neural grid (after the ordering phase) superimposed on the 
original image; (c) Neural grid (after the grid ordering phase) superimposed on the original 
image; (d) Neural grid (after the tuning phase) superimposed on the original image. 
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