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Abstract. In this paper we present a simple hierarchical Bayesian
treatment of the sparse kernel logistic regression (KLR) model based
MacKay’s evidence approximation. The model is re-parameterised such
that an isotropic Gaussian prior over parameters in the kernel induced
feature space is replaced by an isotropic Gaussian prior over the trans-
formed parameters, facilitating a Bayesian analysis using standard meth-
ods. The Bayesian approach allows the selection of “good” values for
the usual regularisation and kernel parameters through maximisation of
the marginal likelihood. Results obtained on a variety of benchmark
datasets are provided indicating that the Bayesian kernel logistic regres-
sion model is competitive, whilst having one less parameter to determine
during model selection.

1 Introduction

Given labelled training data, D = {(xi, ti)}`
i=1, xi ∈ X ⊂ Rd, ti ∈ 0, 1, kernel

logistic regression [1] aims to construct a statistical decision rule of the form

logit{y(x;α)} =
∑̀
i=1

αiK(xi,x),

where K is a kernel function, commonly the Gaussian radial basis function,
K(x,x′) = exp{−η‖x−x′‖2} (note we have omitted the usual bias parameter
for ease of exposition). The output of the model can be interpreted as an
estimate of a-posteriori probability, i.e. y(x) ≈ p(t = 1|x). The optimal model
parameters α are determined by minimising a regularised [2] likelihood training
criterion,

L(α) =
∑̀
i=1

C (ti, y(xi;α)) +
µ

2
αT Kα, (1)
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where C(t, y) = t log y + (1 − t) log(1 − y) is the familiar cross-entropy loss
function, µ is a regularisation parameter controlling the bias-variance trade
off [3] and the Gram matrix K = [K(xi,xj)]

`
i,j=1. This optimisation problem

can be solved via the iteratively re-weighted least-squares (IRWLS) procedure,
e.g. [4]. The value of the regularisation parameter, µ, is critical to obtaining
optimal generalisation; in this paper we demonstrate a simple Bayesian method
to determine a good value for this parameter via the evidence framework due
to MacKay [5–7].

2 Method

We begin by re-parameterising our model such that the prior anisotropic Gaus-
sian prior over the coefficients of the kernel expansion is replaced by an isotropic
Gaussian prior over the transformed parameters, i.e. αT Kα = βT β, where
β is the vector or transformed parameters. Let R represent the upper trian-
gular Cholesky factor [8] of a symmetric positive-definite matrix K, such that
K = RT R. By inspection, the desired parameterisation is given then by

β = Rα =⇒ α = R−1β.

The Gram matrix, K for a radial basis function kernel is at least in principle
of full rank, assuming that xi 6= xj , ∀ i, j ∈ {1, 2, . . . , `} [9]; however it is
possible for K to be numerically rank-deficient in which case the Cholesky
factor R becomes ill-conditioned. We therefore use the incomplete Cholesky
factorisation with symmetric pivoting, due to Fine and Scheinberg [10], to
construct the Cholesky factor R̂, of a numerically full-rank symmetric sub-
matrix of K. Without loss of generality, we assume that only the first W
columns of K can be used to form R̂; the remaining columns are then linearly
dependent, or close to being linearly dependent, on columns 1, 2, . . . ,W , and
can be deleted prior to training (c.f. [11]). The optimisation criterion then
becomes

L(β) =
∑̀
i=1

C (ti, y(xi;β)) +
µ

2
βT β = ED +

µ

2
EW , (2)

and the output of the re-parameterised model is given by

logit{y(x;β)} = k(x)R̂
−1

β, where k(x) = [K(xi,x)]Wi=1.

Again the optimal model parameters, β, can be determined via the IRWLS
procedure. Minimising the the criterion given in equation 2 is equivalent to
maximising the posterior distribution

p(β|D) =
p(D|β)p(β|µ)

p(D)
(3)

where the likelihood is given by the Bernoulli distribution

p(D|β) =
∏̀
i=1

y(xi;β)ti [1− y(xi;β)](1−ti),
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and the prior over model parameters by a multivariate Gaussian distribution,

p(β) =
[ µ

2π

]W/2

exp
{
−µ

2
‖β‖2

}
.

The Taylor expansion of L(β, µ) around the most probable value, βMP, gives
rise to familiar Gaussian approximation to the posterior distribution, known
as the “Laplace approximation”,

p(w|D) ≈ 1
Z∗ exp

{
−L

(
βMP

)
− 1

2
∆βT A∆β

}
, (4)

where z∗ is an appropriate normalising constant, ∆β = β − βMP and A =
∇∇L(β) = ∇∇ED + µI is the Hessian of L(β) with respect to β. For further
details, see e.g. Bishop [12].

2.1 The Evidence Approximation for µ

The evidence approximation of [5–7] assumes that the posterior distribution
for the regularisation parameter, p(µ|D), is sharply peaked about its most
probable value, µMP, suggesting the following approximation to the posterior
distribution for β,

p(β|D) =
∫

p(β|µ,D)p(µ|D)dµ ≈ p(β|µMP,D).

Thus, rather than integrate out the regularisation parameter entirely (e.g. Bun-
tine and Weigend [13]), we simply proceed with the analysis using the regular-
isation parameter fixed at its most likely value. For a discussion of the validity
of this approach, see MacKay [14]. We seek therefore to maximise the posterior
distribution,

p(µ|D) =
p(D|µ)p(µ)

p(D)
.

If the prior, p(µ) is relatively insensitive to the value µ, then maximising
the posterior is approximately equivalent to maximising the likelihood term,
p(D|µ), known as the evidence for µ. Adopting the Gaussian approximation to
the the posterior for the model parameters, the log-evidence is given by

log p(D|µ) = −EMP
D − µEMP

W − 1
2

log |A|+ W

2
log µ. (5)

Noting that A = H + µI, where H is the Hessian of ED with respect to
β, if the eigenvalues of H are λ1, λ2, . . . , λW , then the eigenvalues of A are
(λ1 + µ), (λ2 + µ), . . . , (λW + µ). The derivative of log |A| with respect to µ
(assuming that the eigenvalues of H are independent of µ) is then given by

d

dµ
log |A| = d

dµ
log

{
W∏
i=1

(λi + µ)

}
=

W∑
i=1

1
λi + µ

.
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Setting the derivative of the log-evidence with respect to µ to zero, we have
that

2µEMP
W = W −

W∑
i=1

µ

λi + µ
=

W∑
i=1

λi

λi + µ
= γ,

where γ is the number of well determined parameters in the model. This leads
to a simple update formula for the regularisation parameter:

µnew =
γ

2EMP
W

. (6)

The training procedure then alternates between updates of the primary model
parameters using the IRWLS procedure and updates of the regularisation pa-
rameter according to equation 6.

3 Results

Figure 1 shows the (unmoderated) output of a Bayesian kernel logistic regres-
sion model, based on an isotropic radial basis function kernel, for the synthetic
dataset described by Ripley [15]. The regularisation parameter, µ, was opti-
mised via the update formula given by equations; the kernel parameter, η, was
selected by maximising the marginal likelihood via a simple line search proce-
dure. Clearly Bayesian kernel logistic regression is able to form a good model
of the data, with little sign of over-fitting.

Table 1 presents the test set cross-entropy and error rate over six datasets
for Bayesian and conventional kernel logistic regression models. The regular-
isation and kernel parameters for the conventional kernel logistic regression
model were determined by minimisation of a ten-fold cross-validation [16] esti-
mate of the cross-entropy criterion via the Nelder-Mead simplex optimisation
algorithm [17]. Note that the differences in performance between the Bayesian
and conventional kernel logistic regression model are not generally significant.
However the model selection process for the Bayesian approach is somewhat
less computationally expensive as the regularisation parameter is optimised by
efficient update formula.

4 Conclusions

In this paper we have proposed a simple hierarchical Bayesian treatment of
the kernel logistic regression model. The Bayesian approach is found to be
competitive with conventional kernel logistic regression, but greatly reduces the
computational expense of the model selection process. The key feature of this
approach is that the model is re-parameterised such that an isotropic Gaussian
prior over model parameters is obtained, facilitating simple implementation
of MacKay’s evidence approximation via standard methods. Note that this
approach is quite general and could easily be applied to any kernel model
minimising a regularised likelihood criterion.
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Figure 1: Output of a Bayesian kernel logistic regression (BKLR) model for
Ripley’s synthetic benchmark problem [15], the scale parameter of the RBF
kernel chosen so as to maximise the marginal likelihood.

Table 1: Cross-entropy and error rate calculated over the test set for kernel
logistic regression models with kernel and regularisation parameters determined
via the evidence approximation and ten-fold cross-validation for six benchmark
datasets.

Dataset
Evidence Cross-Validation

xent error xent error

Breast cancer 40.630 0.2597 40.674 0.2597
Diabetis 143.127 0.2400 143.158 0.2467
Pima 146.616 0.2018 146.215 0.2018
Synthetic 230.636 0.0950 230.281 0.0960
Thyroid 6.106 0.0267 3.274 0.0267
Titanic 1066.158 0.2292 1044.719 0.2292
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