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Abstract. Standard pattern recognition provides effective and noise-tolerant
tools for machine learning tasks; however, most approaches only deal with real
vectors of a finite and fixed dimensionality. In this tutorial paper, we give an
overview about extensions of pattern recognition towards non-standard data which
are not contained in a finite dimensional space, such as strings, sequences, trees,
graphs, or functions. Two major directions can be distinguished in the neural
networks literature: models can be based on a similarity measure adapted to
non-standard data, including kernel methods for structures as a very prominent
approach, but also alternative metric based algorithms and functional networks;
alternatively, non-standard data can be processed recursively within supervised
and unsupervised recurrent and recursive networks and fully recurrent systems.

1 Introduction
Pattern recognition tools and statistical classifiers such as feed-forward neural net-
works (FNNs), support vector machines (SVMs), or self-organizing maps (SOMs) can
deal with real-life noisy data in an efficient way and they constitute successful mod-
els in various areas of applications. However, most neural methods are restricted to
real vectors of a finite and fixed dimensionality as input. As a consequence, extensive
preprocessing of data is usually necessary for typical applications of neural methods
to real-life scenarios. Thereby, inputs are represented by a finite-dimensional vector
of problem-dependent real-valued features: categorical variables are encoded by one-
hot-encoding, time series are embedded into a finite dimensional vector space using
time windows, preprocessing of images includes edge detection and various filters,
sound signals and utterances can be represented by cepstrum vectors, chemical data is
characterized by topological indices and physicochemical attributes, to mention a few
examples. Alternative data formats and data representations exist:

sets without a specified order can describe objects in a scene or a set of measurements
such as contact points of a gripper,

functions evaluated at specific points constitute a natural description for time series
or spectral data,

sequences of arbitrary length represent time series or spatial data, such as natural
language, text documents, or DNA sequences,

tree structures describe terms, logical formulas, parse trees, or phylogenetic trees,
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graph structures can be used to encode chemical formulas, scenes in images, or
objects built of various primitives.

Feature encoding of these type of data yields compact vectors, however, the encoding
is often problem specific and time-consuming. Moreover, information is usually lost
if complex data structures such as sequences, trees, or graphs of possibly arbitrary size
are encoded in fixed dimensional vectors. An extension of neural methods to directly
deal with more complex data is thus desirable.

In this article, we give an overview about extensions of neural methods to non-
vectorial data. We distinguish two main directions: similarity based approaches and
recursive models. In similarity based approaches, the similarity measure constitutes
the interface to process more complex data. Structures are processed as a whole based
on the output of the similarity measure adapted for non-standard data. Recursive mod-
els, on the other hand, decompose the structures and recursively process the basic
constituents within the context given by the already processed related constituents.

2 Similarity based approaches
A variety of neural methods processes data based on a similarity measure or metric:
given an input vector�, feed-forward neural networks compute the dot product� �� of
the input and the weights� of the neurons; the support vector machine substitutes the
standard Euclidean dot product by a kernel��� �� ��, �� being a support vector, which
can be interpreted as a dot product in an implicit feature space; radial basis function
networks and self-organizing maps are based on the Euclidean metric�����,� denot-
ing the weight vector of a neuron. If the input� is not element in a finite dimensional
real-vector space, this dot product, kernel, or similarity measure can be substituted by
a generalization which measures the similarity of more complex objects. Depending
on the respective model, further issues such as how to adapt the weight vector are to
be specified. To give an example, the approach [47] suggests a structural perceptron
for adaptive processing of graphs within a supervised and unsupervised setting. To fa-
cilitate adaptive processing, each neuron is associated with an attributed weight graph
and the concept of an inner product of vectors is replaced by the Schur-Hadamard
inner product of graphs. Despite its name, the Schur-Hadamard inner product is not
an inner product, but shares some useful properties of an inner product to extend su-
pervised and unsupervised neural learning machines for attributed graphs. Training of
networks composed of structural units is based on minimizing a suitable error func-
tion as a function of adjustable weights. In the following, we tackle three different
approaches within the context of similarity based methods.

2.1 Functional networks
Functional networks fall within the framework of functional data analysis process-
ing functions� as data points [75]. Thereby, exact input functions are usually not
available in practice. Rather, a vector of input-output pairs�� �� ������

��

���
is given.

Examples for these type of data are time series, which can be seen as the evaluation
of a function at different time steps, whereby the length of the time series or the sam-
pling frequency, i.e. the positions of function evaluation might vary. Spectrometric
data provide an alternative application area since it can be interpreted as the signal
of the same frequency function evaluated for different ranges. Given this vector, the
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input to functional data models is a function fitted to the values. Thereby, standard
approximation techniques such as B-spline approximation can be used.

The space of square integrable functions is infinite dimensional; however, it pos-
sesses a dot product� � � �

�
�
���������� and techniques from standard vector

algebra can be transferred to this case. Thus, linear techniques such as principal com-
ponent analysis or linear discriminants and non-parametric models have been trans-
ferred to functional data [15, 22, 42]. Several proposals to extend nonlinear feed-
forward networks to functional inputs have also been investigated. Commonly, func-
tional data is only present in the first layer of the network, and the models differ in
the way in which the input functions are internally evaluated. In [17], it is shown
that a specific one-hidden layer functional network provides universal approxima-
tion of nonlinear continuous operators. The input function is evaluated within the
network at several points and the weights of the network are contained in a finite-
dimensional vector space. The approach [3] extends this result to multiple nonlinear
operators. Multiple nonlinear operators provide an important tool to simulate systems
which, based on specific parameter choices, show fundamentally different dynamical
behavior within the same system. The contribution [80] investigates an alternative
formulation of functional networks where on the base layer dot products of input
functions and functional weights are computed. In practice, these dot products are
evaluated numerically. In the extended version [79], approximation completeness of
the model and consistency for numerical integration and universal function approxi-
mators is proved. In (Rossi/Conan-Guez, this volume), an application of this model
to chemometric data is presented, thereby tackling the problem of possibly missing
data. The contributions (Delannay/Rossi/Conan-Guez/Verleysen, this volume) and
(Rossi/Conan-Guez/ElGolli, this volume) extend the same idea to alternative neural
network models, radial basis function networks and the self-organizing map.

2.2 Unsupervised models
Multidimensional scaling, ISOMAP, ISODATA, and related tools constitute popular
unsupervised techniques for data visualization and clustering. For data visualization,
these methods aim at projecting given data points to low dimensions whereby the
pairwise distances are preserved as far as possible. Data clustering partitions a given
set of data into clusters based on similarity. Since the given data is only indirectly
characterized by pairwise proximity values, the methods can be directly utilized to
non-standard data provided an appropriate similarity measure is defined. Thereby,
no specific mathematical properties such as symmetry are to be fulfilled to apply the
algorithms. Reasonable similarity measures are provided by kernels as described in
the next section. Finally, for pairwise clustering there are mean-field methods which
can be used to iteratively compute cluster-membership weights [39].

The self-organizing map constitutes another popular unsupervised method for data
visualization and clustering. Apart from an appropriate notion of similarity for non-
standard data, SOM training requires a concept of how to adapt prototypes within a
given non-standard domain. A very elegant and general solution has been proposed
by Kohonen in [52]: a batch-SOM algorithm can be applied to any type of data by
setting the prototypes to the generalized median, i.e. a point in the training set which
minimizes a generalized quantization error. In [52], this approach is used to visualize
proteins based on a similarity measure which punishes mismatches in pairwise aligned
sequences. At the same time, G¨unter and Bunke [31] extended the SOM algorithm to
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attributed graphs by means of the edit distance and a generalization of the weighted
mean of a set of graphs [49]. In [29, 47] simple competitive learning algorithms for
clustering weighted graphs are proposed.

2.3 Kernel methods
Training and classification of the support vector machine can be formulated in terms
of ���� ���, �� being a support vector and� being the kernel. Thus, a modification of
the kernel to more complex data allows to transfer the SVM to more complex domains.
Thereby, the resulting classification model can be interpreted as a linear classifier in
a high dimensional feature space if the kernel decomposes into���� �� � ���� �
����. This is valid for positive semi-definite kernels. Analogously, other kernel based
methods such as kernel principal component analysis rely solely on an appropriate
choice of� and the task thus reduces to the design of kernels for structured data.

Various different methods to extend kernels to non-standard data have recently
been proposed. [26] gives an overview about kernels for structures. Here we use a
slightly different taxonomy and we distinguish three types of kernels: kernels based
on common substructures, kernels based on a statistical model, and kernels based on
local transformations of data. Note that this decomposition is not fully disjoint: the
string kernel which is based on the data structure can also be interpreted as a kernel
derived from a specific generative model [82].

2.3.1 Kernels based on common substructures

In the articles [37, 102], the basic principle of composite kernels is introduced. Simple
kernels defined on subparts of given structures can be extended by generic operations
to complex, convolutional kernels. In particular, strong closure properties for positive
definite kernels hold which allow to easily construct problem specific versions.

As a consequence of this general proposal, kernels which are based on the com-
parison of primitives of given structures have been proposed for different data types.
For sequences, the string kernel and variants count the number of occurrences of com-
mon substrings of limited length�. Thereby, the approaches differ with respect to the
weighting of matches, whether partial matches are allowed, and whether substrings
need to be contiguous [59, 63]. Since direct computation of these kernels is com-
plex, much effort is put on efficient computation schemes. Dynamic programming or
suffix-trees are two alternative techniques within this context. Further improvement
of the efficiency and accuracy of the approaches can be obtained when using words
instead of single symbols for document classification [14] or extending the methods to
transduction tasks [103]. The approach [89] introduces the locality improved kernel,
which also takes local correlations of neighbored sequence entries into account, but,
unlike the string kernel, has been proposed only for fixed structures.

The more general data structure of directed acyclic graphs can be addressed in a
similar way, counting the number of matching or partially matching subtrees of two
given structures as proposed in [19, 94, 108] and also in (Micheli/Portera/Sperduti,
this volume). The approach [20] adapts the general idea of matching subtrees to a
kernel which compares two specific labeled acyclic graphs which come from a limited
description language. As an alternative, string kernels can directly be applied to the
prefix representation of trees as proposed in [98].

For graphs, the situation is more difficult since determining matching substructures
is a complex problem. In (Geibel/Jain/Wysotzki, this volume), graphs are compared
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as a whole by the Schur-Hadamard inner product which measures the similarity of
the connection structure and labels of graphs. The NP-hard problem of finding an
optimum matching is approximated by a heuristic which need not yield a valid kernel.
An alternative graph kernel is proposed in [51]: labels on randomly generated paths
of infinite length are compared. Thereby, efficient computation is possible by means
of a fixed-point equation.

2.3.2 Kernels based on a statistical model

An alternative point of view to define kernels for non-standard data relies on semantic
information about the data and represents data by feature vectors derived from gen-
erative models. The Fisher kernel constitutes an early and very prominent approach
within this line [41]. A probabilistic model is fitted to the data and input structures are
represented by the finite dimensional gradients of the log likelihood of the model at
the respective data point. Thus, the generation process of the data is captured through
the model and compared in this approach. Usually, the Fisher information metric is
used as dot product in the feature space since it describes the Riemannian metric on the
space of models. It can be shown that the Fisher kernel is good if the class information
is contained as latent variable. Often, the Fisher kernel is used in combination with
hidden Markov models in the context of sequential data [89]. Alternative stochastic
models might be appropriate for alternative domains, such as a mixture of probabilis-
tic principal components as proposed in [88]. The approach [96] proposes the tangent
vector of log-odds or TOP-kernel, which is very similar to the Fisher kernel, but di-
rectly derived from a classification model. Here, the class information is contained
as a class variable and the TOP-kernel compares favorably to the Fisher kernel in an
application to biological sequences [89]. Other alternatives to the Fisher kernel can be
derived from the general model of marginalized kernels as described in [51].

Several approaches which fit a separate probabilistic model to each data point
and which compare these probabilistic models have also been proposed. In [66], a
Gaussian model is fitted to each data point and the distributions are compared using
Kulback-Leibler divergence. This method is used for audio- and image-data. A similar
procedure is presented in [54] for sets of vectors. Here Gaussian distributions are fitted
to the sets and their affinity serves as the kernel.

2.3.3 Kernels based on local transformations

The basic idea of the diffusion kernel as introduced in [53] is to extend known local
similarity of objects, e.g. a neighborhood structure given by valid local transforma-
tion steps, to a global kernel imitating a diffusion process. The main algebraic tool is
matrix exponentiation, to iterate the generator square matrix� which describes the
local neighborhood structure of the given data. The approach [53] proposes to use
the negative Laplacian as generator� for the generic setting of an undirected graph
as local neighborhood structure. [58] extends the diffusion kernel introduced over
discrete neighborhood structures to general Riemannian manifolds. The diffusion ker-
nel has been applied to document processing whereby the generator� is induced by
co-occurrence information [50], and to bioinformatics data whereby the generator�

links genes which participate in successive reactions in metabolic pathways [97].
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3 Recursive models
Recursive models decompose the structures into constituents and recursively process
the basic parts. Thereby, the already processed data sets a context for further com-
putation, such that the single parts can be integrated to a whole structure. Basically,
two different directions of recursive processing can be distinguished: partially recur-
rent system which dynamic is driven by the data structure, and fully recurrent systems
which can be seen as complex discrete or continuous time dynamic systems.

3.1 Partially recurrent systems
Simple recurrent networks constitute a well-established tool for time series data. As-
sume�� denotes the sequence entry at time point	. Then the dynamic is given by the
equation
� � ����� 
���� whereby� is some function computed by the network, and

� denotes the network state at time point	. A more detailed overview of recurrent net-
work models can be found in [56]. This dynamic can immediately be generalized to
more complex recursive structures. Recursive networks as presented in [24, 30, 33, 90]
process tree structures as inputs. Given a binary tree	 with root label� and subtrees
� and�, the state of the network
� after processing	 is defined as
� � ���� 
�� 
��.
Recurrent and recursive models are well investigated mainly for supervised learning.

3.1.1 Supervised models

Supervised recurrent network training faces some problems, and complex dynamic
behavior has to be dealt with. A tutorial overview of various aspects concerning learn-
ability, dynamical properties, training algorithms, etc. can be found in [36]. A prime
application of recurrent networks is language learning and a very clear discussion
about possibilities and restrictions to learn languages is given in [10]. Further proto-
typical training schemes and analysis have been presented e.g. in [78, 85].

As already mentioned, recursive networks enlarge the dynamic of recurrent mod-
els to tree structures and they are trained by an adaptation of back-propagation. Thus,
they share most of the dynamic properties and difficulties of simple recurrent networks
[33, 36]. Various alternative training schemes have recently been adapted to recursive
networks [8, 18, 90] and widespread successful applications of recursive networks
can be found in the literature such as theorem proving [30], discourse representation
theory [13], picture processing [18], document image classification [21], connectiv-
ity prediction for molecules [100], natural language parsing [92], protein structure
prediction [73], and chemistry [8]. Thereby, recursive networks compete with kernel
methods, see [106] and (Micheli/Portera/Sperduti, this volume).

The dynamic introduced so far mirrors the causality of time series data or tree
structures. Spatial data and acyclic graphs constitute generalizations thereof. They
can be encoded as time series or tree structures by specifying an order of the vertices.
However, potential loss of information and dependencies of vertices are introduced
by this procedure. Several generalizations of basic recursive models to better fit these
type data have been proposed: recursive networks for acyclic graphs ([7] and (Bian-
chini/Maggini/Sarti/Scarselli, this volume)), bicausal networks for protein secondary
structure prediction [4], an extension of recursive networks to lattices applied to pro-
tein contact map prediction [73], and contextual models for graph structures [65].
These adaptations extend the scope of information available at one recursive process-
ing step according to the given data structure and yield improved accuracy.
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3.1.2 Unsupervised models

Recently, an increasing interest in unsupervised recursive processing of structured
data can be observed, see e.g. [2, 5] for overviews about this topic. The aim of these
approaches is to obtain visualization and clustering tools for temporal signals, spatial
data, and also more complex structures. In principle, the dynamics of unsupervised
models can be borrowed from the supervised case:
 � � ����� 
���� for sequences
and
� � ���� 
�� 
�� for trees. Unlike in the supervised case, however, the concrete
choice of the function� and the network activation
 � is less obvious. Unsupervised
models do not compute an explicit output. Thus the activation
 � can be interpreted
in different ways e.g. as best matching neuron or as distance profile computed for
the whole map. Most unsupervised recursive models have been proposed only for
temporal data, and they obey a simple dynamics given by leaky integrators or trav-
eling waves [16, 74, 104]. The recursive SOM constitutes a more powerful though
computationally quite complex model which relies on the whole map activation [99].
Efficient compression schemes using characteristics of only the winner neuron have
been proposed in [32, 91] which achieve comparable results as the recursive SOM but
which are computationally much more efficient. Thereby, the SOM for structured data
[32] constitutes the first recursive SOM which has also been proposed for tree struc-
tured data. Recently, a general dynamics of recursive models which subsumes most of
the above approaches has been proposed [34, 35]. Based on this general framework,
important mathematical properties and comparisons of the models can be investigated.

3.2 Fully recurrent systems
This section focuses on recurrent systems for solving graph matching problems (GMP).
The GMP refers to finding a structure preserving correspondence between the vertices
of two different graphs such that some similarity function is maximized [81, 86]. Find-
ing such correspondences is an NP-hard combinatorial problem [27]. Therefore and
due to its wide applicability several approximate solutions for the GMP have been
proposed. A multitude of methods originate from the neural network community.

Considerable interest in solving combinatorial optimization problems (COP) by
means of neural networks has been initiated by the seminal paper of Hopfield and
Tank [40]. Following this work, the general approach to solve COPs maps the ob-
jective function of the optimization problem onto an energy function of the network.
The constraints of the problem are included in the energy function as penalty terms,
such that global minima of the energy function correspond to optimal solutions of the
COP. Thus, in the context of graph matching, the constituents of a solution are match
hypotheses of pairs of vertices. The recurrent network dynamic aims at converging to
a stable coalition of active neurons representing a maximal set of compatible matches.

Optimizing networks for GMPs can be roughly divided into two major groups:
a quite intuitive direction poses the graph matching problem as that of recovering
a structure preserving permutation matrix. An alternative direction transforms the
matching problem to a maximum clique problem in an association graph. Approaches
which do not fall in these realms are, for example, the dynamic link architecture [57],
extensions of associative memories for storing and retrieving graphs [55, 64], or self-
organizing winner-takes-all classifiers for structures [46].
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3.2.1 Recovering Permutation Matrices

A permutation matrix is a matrix representation of an injective mapping between the
vertices of two graphs. If the graphs being matched are of order
 and�, resp., then
the permutation matrix is a
 �� matrix with rows and columns summing to one or
zero. The entries of the permutation matrix determine the correspondences between
the vertices of both graphs. Early work uses binary threshold units and fixed penalty
terms to express the constraints [61, 62, 68]. These approaches suffer from infeasible
solutions and instable convergence properties. In the work [72, 76, 87, 93, 107] the
graph matching problem is casted on the more principled statistical physics setting
in terms of the mean-field theory and combined with self-amplification, softmax and
penalty terms to improve solution quality and convergence properties.

Almost all approaches are concerned with determining the similarity of two graphs
by means of minimizing an energy function that is quadratic in the assignment vari-
ables which are subject to a two way constraint. Two conceptual extensions to that
issue are noteworthy to mention: Suganthan et al. [93] relaxed the two way con-
straints imposed on the permutation matrix to an one way constraint for retrieving
several occurrences of a model in a scene in parallel. Another extension due to Finch
et al. [23] extremized a non-quadratic energy function for graph matching to compute
the similarity of two graphs and rectify structural errors at the same time.

3.2.2 Association graph techniques

The second strand of activities in neural graph matching is based on an idea originating
from computer vision. Ambler [1], Barrow and Burstall [6], and Levi [60] suggested
to transform the graph matching problem to the maximum clique problem (MCP) in a
so-called association graph, a product structure derived from the graphs. Association
graph techniques have been applied to several graph matching problems [11, 71, 69,
77]. To meet the requirements of practical applications [9, 48, 83, 84, 95], weights are
annotated to the vertices and edges of an association graph to express the similarities
between pairs of items of both graphs being matched. This recasts the graph matching
problem to the maximum weighted clique problem (MWCP).

Wysotzki [105] applied a Hopfield-style network for approximately solving the
MCP in an association graph. Since then this approach has been applied to learn struc-
tural prototypes of chemical compounds [83], to predict mutagenicity [84], and to sim-
ilarity based recognition of segmented images [9]. Neural solutions which solely focus
on the MCP can be found in [25, 43, 45, 101]. Recently, [44] and (Jain/Wysotzki, this
volume) proposed a Hopfield clique network such that the global and local minima
of the energy function are in one-to-one correspondence with the maximum weighted
and maximal cliques, respectively.

Recently, Pelillo [69] used the Replicator dynamics for solving the MCP within
the same framework. The Replicator dynamics is derived from evolutionary game
theory [38]. It uses the Motzkin-Strauss formulation of the maximum clique problem
[67] and its spurious-free extensions [12, 28, 70]. This formulation allows us to trans-
form the maximum clique problem onto the problem of extremizing a quadratic form.
This method has successfully been applied to match articulated and deformed shapes
described by shock trees [71].
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4 Conclusions
This contribution provides a brief overview about neural network techniques applied
to non-standard data, i.e. data which are not represented in terms of static feature vec-
tors. Non-vectorial representations such as trees and graphs are often better suited to
capture functional, structural, or other complex informations inherent in real world
data. Standard vectorial feature-based representation is usually problem specific,
prone to information loss or, alternatively, the curse of dimensionality. Structured
representations, on the other hand, allow to store data structures of different sizes and
complexity in a natural way whereby information loss is prohibited and, at the same
time, the number of parameters can be limited. As reported, several successful appli-
cations of structure based networks in various different areas of applications such as
chemistry, bioinformatics, or natural language processing have been developed.

However, structure based approaches often suffer from analytical poverty or com-
putational intractability since standard analytical methods cannot easily be transferred
to more complex structures or discrete optimization problems arise as subproblems
during training. Apparently for these reasons, neural networks for non-standard data
are still – despite their importance and potential applicability – widely unexplored.
Nevertheless, an emerging interest in structure based models can be observed in the
recent years, in particular in the context of kernel methods. Comparisons of different
structure based methods have been conducted in the literature, such as (Micheli/Por-
tera/Sperduti, this volume) and quite interesting approaches combine the best of dif-
ferent structure based methods such as (Geibel/Jain/Wysotzki, this volume).

References
[1] A. Ambler, H. Barrow, C. Brown, R. Burstall, and R. J. Popplestone. A versatile computer-controlled

assembly system. IJCAI 1973.
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