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Abstract. In this tutorial paper about neural maps we review the

current state in theoretical aspects like mathematical treatment of con-

vergence, ordering and topography, magnification and others. Therby

we concentrate on two well-known examples: Self-Organizing Maps and

Neural Gas. Moreover we briefly reflect outstanding applications showing

the power of neural maps.

1 Introduction

Fundamentals and basic notations Neural maps occur in real brains in all
sensory modalities as well as motor areas being an important step in informa-
tion processing. From these biological fundamentals models have been derived,
which today constitute an important neural network paradigm comprising a
broad variety of methods ranging from statistical approaches to strong biologi-
cally realistic models [2, 56, 81, 113, 149]. In this paper we restrict ourselves to
those models which are designed for data processing. In this technical context,
neural maps are utilized in the fashion of topographic vector quantizers. More
formally, in neural mapping we consider a set W ⊆ R

DV of reference vectors

wr (codebook vectors) to represent a large data set V ⊆ R
DV . Each vector

is uniquely assigned to a certain r ∈A whereby A is an arbitrary index set.
Reflecting the biological roots, the elements of A are called neurons. Then, a
data vector v ∈ V is projected onto that neuron s ∈A, of which the reference
vector w

s(v) has a minimum distance d to v, compared to all elements ofW:

ΨV→A : v �→ s = argmin
r∈A

(d (v,wr)) . (1)

The distance d (v,wr) = ‖v −wr‖ is based on an appropriate norm, usually
the Euclidean. The reverse mapping is ΨA→V : r �→ wr. Both functions
together determine the (neural) map M = (ΨV→A,ΨA→V ) . All data points
v ∈V that are projected onto the neuron r make up its (masked) receptive
field Ωr.
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Generally, neural maps can be taken as stochastic realizations of the Linde-
Buzo-Gray-algorithm (LBG or k-means, [91]) with the additional feature of
topographic mapping [71]. The convergence of these approaches is based on
the theorems from Kushner&Clark or Ljung [93, 86].

The main task of neural map approaches is to describe given data in a
faithful way, such that the main properties are preserved as good as possible.
These properties may be the usual reconstruction error, the probability density
[133], the shape of data in the sense of possibly non-linear principle component
analysis (PCA) [105, 116] or visualization like multi-dimensional scaling (MDS)
[110], topology preserving (topographic) mapping [144], the classification error
etc. For the different goals several approaches exist, whereby we further have
to differentiate between supervised and unsupervised learning schemes.

Types of neural maps A very popular algorithm is the Self-Organizing
Map (SOM) introduced by Kohonen in [80]. Beside a huge amount of models
derived from the original one (for an overview see [81]), the SOM also inspired
other (neighborhood oriented) VQ schemes. Historically earlier but closely re-
lated to SOM is the Elastic Net (EN) with well defined mathematical properties
(convergence) and biological motivation [149]. The Topology Representing Net-
work (TRN) has a structurally similar learning scheme compared to SOM but
a dynamically adapted topology between the neurons in A [97].

A further topographic mapping scheme is the Generative Topographic Map-
ping [14], based on a constraint Gaussian mixture model, the parameters of
which are determined by a maximum likelihood procedure using a simplified
Expection-Maximum-principle (EM) procedure which is more complicate than
SOM learning. Linsker proposed a topographic VQ network with optimal infor-
mation transfer [92] based on information theoretic learning [109]. Equiprob-
abilistic topographic map formation based on kernel methods is extensively
studied by van Hulle [133] also under the constraint of maximum entropy [134].
Vector quantization based on potential dynamics is of great interest because
of its clear mathematical treatment, for instance based on the EM [20]. Be-
side the above mentioned TRN such topographic approaches are the stochastic
topographic mapping and its variants [56, 71, 134]. Thereby, the basic math-
ematical trick is the mean field approximation to derive the EM-steps. Other
related neural maps to be mentioned here are the counterpropagation network
[67] which includes a SOM-layer or the ART-map family based on adaptive
resonance theory [22].

As mentioned above, the topographic mapping as well as the neighborhood
cooperativeness during learning are the essentials in neural vector quantiza-
tion. In the following we will focus on the SOM and TRN as well-known
and widely ranged examples for static and dynamic neighborhood handling in
neural maps. Thereby, in SOM the apriori given lattice A is usually a possibly
high-dimensional rectangular lattice or a grid based on hexagonal structures.

2 SOM and TRN

2.1 Convergence properties

Although the adaptation process in SOM is simple, the mathematical treatment
is difficult [28, 30]. Most results are valid only for the one-dimensional case.
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For the continuous case (continuous inputs as well as continuous lattice A)
the stationary state and convergence properties are investigated by means of
the spectral density of fluctuations in the equilibrium [114]. These consider-
ations were extended by several authors to analyze the dynamic behavior in
convergence and ordering [35, 39]. Further, it has been shown that it is impos-
sible to associate a global potential function to SOM for continuous inputs and
studied the role of the neighborhood function [42, 43]. A straightforward defi-
nition of an energy function leads to slightly different winner determination in
Eq.(1) [71]. Before convergence, an ordering process takes place. The ordering
conditions and time behavior of ordering were studied in [19, 38].

The discrete cases are more complicate than the continuum case. For dis-
crete lattices, the first convergence proof was given in [118] based on the ob-
servation that SOM can be taken as a Robbins-Monro-algorithm [115]. The
respective differential equations for weight adaptation are shown to be absorb-
ing. Further convergence and ordering theorems for several, more general,
parameter settings are studied by several authors, verifying the almost sure
convergence in dependence on the concrete choice of the neighborhood shape
and range, learning rate etc. [10, 11, 16, 17, 44, 47]. Meta stable states may
occur for certain configurations (non-vanishing learning rate) [48]. Sufficient
conditions for convergence are given in [45]. Lebesque continuous inputs are
studied in [46], discrete inputs are considered in [27, 90]. Discrete inputs but
high-dimensional lattices A are investigated in [119]. More higher-dimensional
cases results can be found in [49, 89, 30]. Depending, for instance, on grid
configurations [94, 95] instabilities may occur [29]. For short range neighbor-
hoods, instabilities may be observed, too, although starting from an ordered
configuration [36].

The TRN weight adaptation process is based on the Neural Gas (NG) algo-
rithm [98]. The adaptation process is equivalent to the dynamic of a diffunding
gas. Hence, it follows a gradient descent of an energy function which is the
usual mean squared error.

2.2 Density estimation, magnification and magnification
control

The SOM as well as NG/TRN distribute the weight vectors according to the
input probability density P : ρ (w) ∼ P (w)α. The exponent α is called magni-
fication. Using this property both models can be used to estimate the usually
unknown data distribution P [88]. A magnification α = 1 implies an infor-
mation optimal coding of data by the network [152]. The deviations from this
optimal values for SOM and NG are due to the incorporation of neighborhood
learning and topology preservation [30, 98, 144]. Depending on the shape of
neighborhood different magnifications are achieved [40, 111, 146]. Therefore,
several modifications exist to control magnification by control of the winning
frequency [41], local learning rates [5, 69, 140] or winner relaxing terms [24, 26],
the latter one also available for EN [25]. A review of these methods is given
in [143]. SOM and maximum mutual information with respect to additional
knowledge (auxiliary data) is discussed in [79, 125].

The theoretical magnification law for SOM is only valid for the one-
dimensional case whereas for NG the result holds for higher-dimensional cases,
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too. In [76, 99], both in this book, numerical properties for higher-dimensional
cases for SOM are investigated.

2.3 Topographic mapping and growing variants of SOM
and NG

One main idea of neural maps is topographic (or topology preserving) map-
ping by means of Eq.(1) which is closely related to the above mentioned or-
dered states in SOM. Generally, neural maps project data from a possibly
high-dimensional input space V ⊆ R

DV onto a position in a topologically or-
dered output space A using a set of associated (to A) reference vectors such
that, roughly speaking, a continuous change of a parameter of the input data
should lead to a continuous change of the position of a localized excitation in
the output space. The mathematically exact definition is based on the recep-
tive field of the neurons [97, 144] including all aspects of earlier approaches
[7, 12, 33, 55, 153]. For TRN topographic mapping can be achieved if the
weight vectors are lying dense in the data space whereas for SOM one has to
proof topology preservation for a given map. Several measures were established
to judge the degree of preservation. Although not based on the mathematical
exact definition, the topographic product [7] and its derivatives [139] seem to
be the best tools [6].

Two aspects may lead to violations of topology preservation: beside the con-
vergence problems, violoations of topology preservation may be observed due to
the topological mismatch between the chosen lattice structure and data shape.
For instance in case of rectangular typed lattices with dimension DA: if DA

differs from the effective data dimension Deff �= DV topological mismatches
generally may occur. The respective theory of meta- and instable states is ini-
tially based on Fokker-Planck approaches [113]. Thereby the learning is taken
as Markov process [70, 96]. Further studies also use the Ginzburg-Landau-
theory to describe the phenomena in more detail [37, 35]. The high-dimensional
analysis was pointed out in [8] using phase diagrams.

To overcome the topological mismatch problem, growing variants of SOM
were developed [50, 123, 9] or input pruning was tried [15]. The structure
adaptation is closely related to the problem of SOM and PCA [34] and its
non-linear extension of principal curves [66]. A growing approach for NG was
proposed in [52] and for EN in [51].

3 Further variants

Non-standard metrics and general lattice structures Usually the simi-
larity measure in input space is the Euclidean metric or the scalar product.
However, non-standard metrics were investigated to extend the possibilities of
neural maps for different environments. Scaled input dimensions are used in
the above mentioned methods using auxiliary information to be information
optimal [79, 125]. Related to scaled input dimensions are such SOM and NG
approaches, which are dedicated to input pruning for determination of relevant
input dimensions in dependence on different optimization goals [64, 15]. An
approach for clustering functions by SOM according to a respective similarity
measure can be found in this book [1]. Another variant is the extension of
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SOM for exploration of subspaces [83]. Structured data as trees, for instance,
are considered in [108]. A general frame work for unsupervised structured
data processing is provided in [57, 59]. The context learning approach [129]
presented in this book can be seen as matching this topic, too. Otherwise, in
SOM also non-standard metrics also may occur between the neurons in the out-
put space A. In particular, hyperbolic structures are of interest [112] which can
be related to recursive variants [127]. Tree-structured SOMs were established
in [21, 84].

Supervised learning The combination of neighborhood cooperativeness
with methods of supervised learning in Learning Vector Quantization (LVQ)
has gained an increasing importance during last years. After the initial work
about supervised SOM and LVQ mentioned in [81] and the generalization of
LVQ by an energy function [120], neighborhood learning in NG was proposed
[145]. Further, neighborhood cooperativeness in NG was combined with non-
standard metrics approaches in LVQ [65] for better classification performance
[60, 63]. Thereby, it can be shown that the generalization ability is the same
as for Support Vector Machines (SVM) [61, 62].

Recursive and recurrent mapsRecursive variants of SOM [138] and NG
may be used in sequence processing [128, 127]. Recurrent SOMs and temporal
SOMs are studied in [23, 135] which can be applied in time series and sequence
processing [85]. These investigations are closely related to the above mentioned
studies about neural maps for structured data processing.

Links to other Soft Computing paradigms Vector quantization and
neural maps have strong links to other soft computing paradigms. Naturally,
there is a great overlap to Fuzzy methods. Fuzzy clustering and neural maps
are widely discussed [13, 54, 107, 132, 77]. The Fuzzy approaches can also be
interpreted by the stochastic neural map variants as suggested in [56, 73].

New trends in hybrid systems also combine evolutionary approaches and
neural maps. Examples for evolving neural maps are in [82, 102, 131]. Vice
versa, neighborhood cooperativeness known from neural maps are incorporated
in strategies in evolutionary approaches, too. Examples are migration strategies
[141] or neighborhood attraction in genetic operators [75, 74]. A review can be
found in [148]

4 Implementation on computer hardware

Sequential processing In the field of neural maps there is a big variety
of software, ranging from rather independent modules on source code level
(e.g. C/C++ or Java functions) to partly pre-compiled objects (e.g. SOM-
PAK [158]) of general purpose simulation systems (e.g. MatLab [154]) up to
integrated parts of stand-alone neural network simulators (e.g. SNNS [159],
NeuroSolutions [156], PDP++ [157], NeuralWorks [155]). Almost all of them
provide a more or less extensive library of neural network paradigms, among
them neural maps, to be run on popular combinations of mainly single processor
hardware and operating systems. This way, at least neural maps in standard
type can be easily trained and simulated. More specialized neural designs or
more recent developments [112] are often not yet included in universal SOM
repositories.
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Parallel processing From the scientific point of view parallel implementa-
tions of neural maps seem to be much more promising. In general, there is a du-
alism between artificial neural networks and parallel hardware, which is mainly
based on the inherent parallelism of neural networks themselves [4, 72, 117]
and on the request or even the necessity to speed-up training and simulation
of larger complex networks. While the first aspect makes a parallel implemen-
tation of artificial neural networks suggestive at all, the second one represents
its motivation. The properties of this dualism depend on topology, learning
strategy and control parameters of considered neural networks on the one hand
and on the hardware and software architecture on the other. For a survey refer
to [121].

Keeping this in mind it is rather obvious, that different neural networks
perform1 variably on different hardware. Independent of a particular hardware
Amdahl ’s law reflects the possible speed-up only depending on the fraction
of instructions inherently sequential (β) and the number of available parallel
processors p.

s =
p

βp+ (1− β)
(2)

If, for example, β = 0.2, the equation shows that as p increases, the speedup s
goes asymptotically to 5.

However, Amdahl ’s law is only one issue to judge a particular parallel im-
plementation. For parallel processes it is a basic necessity to exchange data
between each other. Thus, the performance also is affected by the amount of
data to be exchanged at each step (e.g. learning step) in relation to the math-
ematical (numerical) complexity from the algorithmic point of view and the
computational power of each node in conjunction with data transmission prop-
erties between them as hardware system characteristic. In addition to these
issues, a number of further properties of the utilized hardware, such as processor
registers, processor cache and system memory sizes and structure, computation
speed and inter-node bandwidth and latency as well as some software features
influence the benefit from a parallel implementation.

Neural maps, especially the in this paper more detailed considered Self-
Organizing Maps, are characterized by a rather close relationship to parallel
hardware. There are many successful implementations on different platforms,
such as shared memory systems, computer clusters and special purpose proces-
sors [104, 130, 58, 124]. In relation to the above mentioned issues, neural maps
are very interesting and especially promising neural network paradigms:

• Often rather large maps consisting of a big number of neurons are required
to feature the desired projection resolution.

• Since all neurons are located within the same layer (in contrast to layered
networks with a hierarchical data processing), SOMs offer a high degree
of independent computation and consequently a high level of parallelism.

1Here we refer to instruction parallel processing. In contrast to data parallel processing,
which only requires a partitioning of the data set and not a decomposition of the algorithm
into independent and thus parallelizable parts.
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• The favorable balance between computational complexity and data trans-
mission leads to a good scaling of parallel implementations.

A comparison of parallel implementations of different hardware by means
of some SOM benchmark applications can be found in [121].

5 Outline on possible real world applications

There exist a lot of interesting and outstanding applications of SOMs, NG
and other types of neural maps. The main features required are clustering
and topology preserving mapping for visualization of high-dimensional data
[136, 137]. The range of applications is very broad. One of the largest project
is WEBSOM [78], a SOM-based document exploration tool whereby the topol-
ogy preservation property helps finding related documents, once any interesting
document is found. Other innovative topics are economic and financial appli-
cations [32, 31] which may be combined with classical statistical features [126].
Another wide application area is image processing [3, 87]. In this light one
also can see the task of visual person tracking using a supervised SOM as pre-
sented in [68]. A special fascinating topic in image processing is satellite remote
sensing image analysis [147]. Thereby, huge-dimensional spectral data called
hyperspectral images are to be processed and visualized. Neural Maps are con-
venient tools for extensive explorative analysis [18, 53, 103, 100]. Especially,
we here have particular interest in magnification control to detect rare features
as pointed out in [99] in this book.

Another application area is medical data processing and analysis. Here one
can find classical applications of image processing and standard data analysis.
But also interesting new developments in algorithm design can be found which
are motivated by ideas in medical applications, for example the deformable
feature map [150]. Further medical applications can be found in [142]. A very
recent research area is bioinformatics. Yet, neural maps can valuably contribute
to knowledge discovery and data processing also in this topic as demonstrated
in an increasing number of publications [101, 122, 106, 151].
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