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Abstract. An overview of research on the implementation of neural systems is
presented in this paper. We focus on implementations where the algorithms and
their physical support are tightly coupled. First, we concentrate on the potential
of probabilistic algorithms to compensate for hardware non-idealities. Then, elec-
tronic circuits which aim to reproduce the structure of neurobiological systems in
hardware are introduced. Finally, we extend to neuroengineering whose focus is
placed on interfacing artificial devices with biological systems.

1 Introduction

Neural computing is now recognised as a useful paradigm in engineering. Complex
non-linear problems that conventional methods fail to solve can often be addressed by
artificial neural networks, almost always implemented in software. The platform on
which the algorithm is to be run is normally not taken into account during the design
stages. Clearly, the algorithms and the physical means by which they will be imple-
mented in order to support the targeted application are not tightly coupled.

In contrast, some consider the physical nature of the computational elements re-
quired by their algorithms from the early stages of a design. Such work stems from
the premise that neural algorithms in biological systems are significantly shaped by
the potentials and limitations of the physical substrate on which they are implemented
(wetware). Neural hardware researchers can also benefit from viewing the physical
properties of materials inherent to electronics as opportunities to exploit in order to
carry out neural-like computations.

This paper gives an overview of hardware implementations of neural systems as an
introduction to the special session on “Hardware systems for neural devices” hosted
at ESANN 2004. In section 2.1, some research in probabilistic computing in hard-
ware is introduced. As technological advances create higher integration levels and
demand lower power supplies, on-chip signals become more vulnerable to noise and
other artifacts. Probabilistic computing has the potential to achieve useful information
processing in noisy and corrupted environments. The paper continues with a short
review of neuromorphic engineering - a discipline that mimics not only the high-level
operation of neural systems, but also the low-level components that produce the char-
acteristic behaviour of biological neurons. Following this discussion, hardware that
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interfaces directly with biological tissue will be presented. This area of research is
commonly known as neuroengineering and will become important in the context of
medical engineering. Finally, we briefly mention new research on the implementation
of neural algorithms using implementation technologies which are still in early stages
of development: molecular electronics, optical computing and quantum electronics.

2 Active Research

2.1 Probabilistic computing

Nanotechnologies and bioelectronics imply ever higher levels of integration and raise
many questions regarding the physical integration platforms. The fundamental issues
raised, however, go beyond simply integration to the need for intelligence, i.e. how
to translate and use the knowledge and competence acquired by a system. Not only
should it be ’intelligent’, it must also be compliant with the technological issues raised
by the drive to miniaturise and add functionality to integrated circuits (ICs). One im-
mediate consequence of the on-going effort to fit more into ICs is that transistors sizes
drop into deep sub-micron dimensions (i.e. below 100nm). This has the unfortunate
effect of pushing CMOS process technologies closer to their limits of operation. The
process parameters degrade with the decreasing device sizes, giving rise to lower sup-
ply voltage, larger leakage currents, larger coupling capacitance, worse mismatches...
The signals of interest therefore become “infected” by many spurious factors, i.e. they
become very noisy and less predictable.

Probabilistic computing offers a consistent statistical approach to deal with uncer-
tainties and for extracting useful information from large data sets and thus has much
to offer in the context of future silicon devices. Unfortunately most neural algorithms
are poor candidates for hardware implementation [1]. For hardware amenability, an
algorithm must be robust enough to cope with noise and imprecision. Stochastic
Neural Networks such as the Boltzmann machine have proven their data modelling
power. However most types of non-deterministic networks require extensive sampling
to reach equilibrium. Their complexity is such that these settling times cannot be com-
pensated for by hardware implementation and their direct translation into VLSI (Very
Large Scale Integration) is far from straightforward. An unsupervised learning scheme
with a simple and local learning rule would prove far more amenable to hardware. It
would greatly ease the algorithm translation into a smaller number of more robust and
reliable circuits.

One such algorithm, the Continuous Restricted Boltzmann Machine (CRBM), is
presented in [2] and has been implemented in hardware [3]. It has proven to be able
to detect abnormal heartbeats in [2] but also to compensate for sensor drifts in an
ingestible capsule-sized Lab-on-a-Pill [4].

2.2 Neuromorphic Engineering

This discipline reaches beyond simply following the high-level operation of the neur-
onal systems found in biology to mimic the structure of the low-level components
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of these systems. Some neuromorphic work is based on idealised neurons which re-
semble their biological counterparts only because they generate spiking activity at the
output as response to stimulations. Other neuromorphic investigations model, for ex-
ample, very detailed phenomena such as calcium dependent effects in the sensitivity
of the neuron to the strength of the input current [5].

In analogue VLSI (aVLSI), the laws of physics are very evident during the design
process. Analogue VLSI designers build small integrated information processing
devices using basic physical principles such as conservation and diffusion of charge.
Hence, aVLSI is the most widely used implementation technology for neuromorphic
engineering. Furthermore, well documented techniques to build integrated sensors in
silicon (image sensors in particular) exist, which encourages the use of aVLSI in the
neuromorphic context.

We will highlight three main goals in the design of neuromorphic systems. Firstly,
many engineers are interested in building smart sensors. Animals have robust and
optimised interaction with the environment implemented with limited ”hardware”
resources. Thus, inspiration from neuronal system can help build better artificial
sensors. This approach has been successful and now many imagers, silicon coch-
lea and other neuromorphic systems exist [6, 7]. A second group of researchers see
neuromorphic systems as a tool to investigate neuronal models implemented in a phys-
ical substrate interacting in real time with the environment [8, 9, 10]. A final group
sees neuromorphic systems as an opportunity to exploit some of the non-linearities
of many physical devices. In general, however, many neuromorphic researchers are
driven by a all of these goals, which are not mutually exclusive.

In [11], Carver Mead highlighted the fact that the movement of charges in the
channel of MOS transistors operated in weak inversion is the result of essentially
the same physics that determines the flow of charge across the membranes of neur-
ons. However, this fact has proven difficult to exploit explicitly to build neuromorphic
aVLSI circuits. Systems built over the last 15 years combine techniques from standard
aVLSI design (current mirrors, differential pairs, push-pull inverters, etc) with basic
building blocks developed by neuromorphic engineers. These include the current-
mirror integrator [12] (a compact circuit widely used to introduce dynamics in silicon
neurons), adaptive pixels such as that in [13] and Mead’s axon-hillock circuit with a
capacitive voltage divider [11].

As we have already mentioned, neuromorphic aVLSI has been used successfully
to build complex sensory systems. Higher-level processing stages in a neuromorphic
system should include adaptability, and therefore learning. Learning has been difficult
to implement largely for technological reasons. Storing analogue weight values that
result from many learning algorithms over long time periods is a task that requires
large circuitry if standard design techniques are used. Technologies such as float-
ing gates are often investigated for the storage of analogue weights [14, 15]. These
techniques are, however, far from mature and reliable when used in the analogue do-
main. Recently, some investigations have focused on learning algorithms inspired by
synaptic plasticity found in biological systems that produce binary weights (bimodal
weight distributions) after analogue training [16, 17]. Such weights are far easier to
store than are analogue values.
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2.3 Neuroengineering

The main goal of neuroengineering is to interface living tissue with artificial devices
[18]. Clearly, important and wide-ranging biomedical applications exist, but neur-
oengineering also has an important role in neuroscience, i.e. in helping to correlate
behaviour with neuronal activity.

Medical applications such as helping persons suffering motor disorders to com-
municate or control a prosthesis [19] inspire neuroengineers and demand a long-term,
reliable interface between biological cells and artificial systems. Current systems such
as the Brain-Computer Interface (BCI) use electro-encephalographic (EEG) activity to
give some degree of control to the user [20, 21]. A working example is described in
[22] where a BCI is used to control a web browser. Unfortunately this type of tech-
nology is not very portable. To gain portability and more autonomy these systems
must be fully integrable and low-power. Furthermore, this type of recording does not
allow for great accuracy. The signals are low in amplitude and measured across mil-
lions of neurons. They are merely an averaged representation of the global activity of
a population of neurons and consequently lack resolution. This can be unacceptable
for applications such as motor-control [23] where specific motor activity needs to be
acquired and treated in real-time. The sensors must therefore be closer to the neurons
of interest. This is normally done by surgically implanting small arrays of micro-
probes in the desired area of the brain/nerves. Since complex surgical procedures are
needed to directly interface with living tissues or nerves, the devices implanted must
have a significant life-time. The medical implants could possibly be cell-powered, i.e.
fuelled by the metabolic energy of our body fluids [24]. However the power obtain-
able from biofuel is rather low [25] so the neural prostheses must be very low-power.
MEMS (Micro-Electro-Mechanical Systems) technology is employed to fabricate the
microelectrodes which come in contact with the neurons. Penetrating microwires [26]
give the best results and have the longest longevity as the glial cells which feed and
support the neurons grow well on them [27]. Despite the invasive nature of this type of
probes, work in [28] has reported no discomfort or nuisance caused by such devices.
The applications for such types of hybrid systems are diverse and very exciting. For
example, a recent breakthrough in brain interfacing described research in which 2
trained monkeys could control a robotic arm directly by their brain activity [29]. Mi-
croelectrode arrays were implanted in multiple cortical areas of these monkeys. Move-
ments in primates are controlled by several interconnected cortical areas in the frontal
and the parietal lobes. Accurate real-time and 3-dimensional movements of a mech-
anical arm were obtained from the processed neural activities recorded from the mon-
keys. Cochlea prostheses are another successful example of neuroengineering, with
over 70 000 cochlear implants worldwide to date [30]. They allow the profoundly deaf
to hear well enough to interact normally in our society and visual neuroprostheses for
the blind are now also under serious investigation [31].

Studying specific details of the brain’s computational power is not trivial, due
to the limited access we have to the internal working of a live brain. MEA (Multi-
Electrode Arrays) aim to give such access, albeit of limited scope. Entire networks
of neurons can be cultured on electrically conductive plates. They allow multiple
electrical signals to be monitored simultaneously. The electrode’s circuitry is often
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bi-directional to also permit neurons to be excited. Work reported in [32] illustrates
the use of MEA for studying in-vitro the learning capabilities of a neurally-controlled
artificial animal; the Animat. Others [33] use hybrid networks of real and artificial
neurons to permit the study of poorly understood mechanisms in the thalamus.

The type of electrodes previously mentioned only records electrical signals, while
neural coding is both electrical and biochemical. It is therefore essential to fully un-
derstand neural plasticity/coding to also have an insight on the biochemical reactions
of the neurotransmitters. Neurochemical sensors [34, 35] such as carbon electrodes
electro-chemically transduce the neurotransmitter concentration into small currents
(in the order of pA) [34]. Carbon nanotubes, a new product of microfabrication and
nanotechnologies, also have the potential to be useful in this form of micro- and nano-
interfacing. Their interesting chemical and electrical properties might be exploited as
biosensors or nanoprobes [36].

The neural-electronic system must be capable of reproducing neural signals with
high fidelity. A study of the physical parameters’ effects on the measured action po-
tential at the junction between the neurons and the probe is presented in [37]. Since
transistors are employed to form the link to neurons, they should be exploited to in-
clude simple signal preprocessing (e.g. amplification, filtering...) within the neural
interface. A typical neural interface comprises microelectrodes, preamplifiers, sample
and hold circuitry, multiplexers, and amplified output stage. The new generation of
neural interfaces also include wireless transmitters [26] to transfer the data to external
peripherals. The preamplifier stage is of particular importance since it is the first stage
to which the neural signals are fed. Biological signals are weak and must be amplified
[38]. The added circuitry must have no other effect on the signals probed, such that
the readings are immune from electrical interferences and artifacts placing stringent
demands on the quality of the analogue circuit designs that are to be used for neural
interfaces.

2.4 Alternative technologies

Alternative implementations of neural systems are being investigated. An example
of such an alternative technology is optics. Optical neural networks [39] use optical
signals (laser) with variable focuses for neural signalling and computation. Other work
in [40] points towards new types of hybrid semiconductor/molecular (CMOL) devices
suitable for nanotechnologies. The implication of such defect tolerant nanoelectronic
neural networks could be very significant for future technologies. Finally, as devices
become smaller, quantum effects will dominate the behaviour of computing elements
and quantum neural computing may become a reality [41].

3 Conclusion

Motivations for implementing neural systems into hardware are diverse. Neuroengin-
eering’s goal is to create a direct interaction between artificial devices and biological
systems. A major part of this research field is in the context of medical applications
(neuroprostheses). The primary objective of neuromorphic engineering is to study and
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then translate working biological principles into electrical circuits. It aims to replicate
the neurons machinery in hardware to build smart sensors or investigate interactions of
neural models with real time stimulus. Probabilistic neural algorithms offer a means
of computing that works with the grain of analogue hardware. They have the potential
to retrieve useful information from corrupted data sets. They are therefore a plausible
candidate for computing in noisy highly integrated environments.

The unifying aspect of these disciplines is that they all bear upon the physical
properties of their support technologies. Interdisciplinary research linking these dis-
ciplines together will probably emerge in the future. For example, neuromorphic and
neuroengineering can be brought together for designing prosthesis that connect real
neurons to artificial neurons.
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