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Abstract. This work explains a method for blind separation of a linear mixture 
of sources, through geometrical considerations concerning the scatter plot. This 
method is applied to a mixture of several sources and it obtains the estimated 
coefficients of the unknown mixture matrix A and separates the unknown 
sources.  

 

1.   Introduction 
 
When p different source signals propagating through a real medium have to be 
captured by sensors, these sensors are sensitive to all sources ( )is t  and thus the 
signal ( )kx t , observed at the output of sensor k, is a mixture of source signals. With a 
linear and stationary mixing medium the sensor signals can be described by: 

 
where 1( ) ( ( ), ..., ( ))T

nx t x t x t=  is an experimentally observable ( 1)n× -sensor signal 
vector s(t), with  1( ) ( ( ), ..., ( ))T

ps t s t s t=  is a ( 1)p× - unknown source signal vector 
having stochastic independent and zero-mean non-Gaussian elements ( )is t , and A is a 
( )n p×  unknown full-rank and non-singular mixing matrix. The solution of the blind 
signal separation (BSS) problem consists of retrieving the unknown sources ( )is t  
from just the observations. To achieve this it is necessary to apply the hypotheses that 
the sources ( )is t  and the mixture matrix A  are unknown, that the number n of 
sensors is at least equal to the number p of sources, i.e. n p≥ , and that the 
components of the source vector are statistically independent yielding: 

     
     In order to solve the BSS problem a separating matrix  W is computed whose 
output is an estimate of the vector ( )s t  of the source signals such that: 
 

1( ) ( )y t W x t−= (3) 
  
          Any BSS algorithm can only obtain W  subject to: 
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with a diagonal scaling matrix D modified by a permutation matrix P. Recently, BSS 
and ICA (Independent Component Analysis) have received much attention because of 
its potential applications in signal processing. A great diversity of estimation methods 
have been proposed based on some kind of statistical analysis, neural networks [7], 
the entropy concept [3], the geometric structure of the signal spaces [1], [6], the 
fixed-point algorithm FastICA [5], the maximum likelihood stochastic gradient 
algorithm [2], the Jade algorithm [4], among others. 
  
2.   Principles of the new method 
 
For p = 2 and with bounded values in a uniform distribution, the observed signals 

1 2( ( ), ( ))x t x t  form a parallelogram in the 1 2( , )x x  space, as shown in Figure 1. We 
have demonstrated [8] that, through a matrix transformation, the coefficients of the 
matrix coincide with the slopes of the parallelogram. It can be seen that for random 
uniform sources, the parallelogram representing the scatter plot 1 2( , )x x  is 
geometrically bounded within the segments between the points 1P  to 4P . The slopes 
of these segments give the coefficients of the estimated mixture matrix W . In order 
to obtain these segments, it is necessary to estimate the coordinates of those points Pi,  
i = 1, 2, 3, 4.  Assuming non-uniformly distributed signal as the sources, for example 
speech signals with an underlying super-Gaussian distribution; the form of the sensor 
signal distribution in the scatter plot is highly non-uniform too. In this case it is not 
sufficient to estimate the borders of the bounded scatter plot. Rather, it is necessary to 
detect the directions of high density in the scatter plot. These directions are called 
ICA axes (ICA-1 ; ICA-2). 
  
2.1   Description of the algorithm 
 
First of all, the algorithm computes the kurtosis of each component of the sensor 
signals and also the correlation coefficients between all observations. This is to detect 
whether the underlying source signal distributions correspond to sub- or super-
Gaussian distributions. According to the Central Limit Theorem, mixtures will tend to 
be closer to Gaussian than the original ones. Consequently, kurtoses of the mixtures 
will be closer to zero (Gaussian distribution) than the sources:  

 
   In any case, for mixtures of two signals, they will tend to preserve the sub- or 
super-Gaussian nature of the original signals, assuming that both sources have the 
same sign in the kurtosis. If the kurtoses of all observations are positive, the 
algorithm searches for high density regions of the sensor signal distribution. With 
sub-Gaussian signals, the algorithm estimates the bounding box of the parallelogram 
representing the scatter plot. 

{ } [ ]( ) max ( ) ; , 1, ...,i jKurt x Kurt s i j n≤ ∈ (5) 
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Figure 1. Scatter plot: Representative points and ICA axes. 
 

The algorithm subdivides the scatter plot 1 2( , )x x  into a regular lattice of cells with N-
rows and M-columns. Then, the algorithm computes the number of cells in the lattice 
in which the number of points inside it is greater than a given threshold TH. The 
distribution of sensor signals within each of these cells then is replaced by a prototype 
sensor signal vector. The prototype vector mostly does not point towards the centre of 
the cell because its position is weighted by the density of points 1 2( , )i ix x  in this cell. 
The next step of the algorithm finds those points which either form the border of the 
hyperparallelepiped or mark the high density regions of the sensor signal distribution 
in the space, by looking for cells that have an empty neighborhood (such cells have 
fewer points than the threshold TH). Then these cells without a complete 
neighborhood form the border of the distribution encompassing NR data points in the 
scatter plot. The algorithm then computes the coordinates of 1 11 12( , )P p p= and 

2 21 22( , )P p p= . The scatter plot has been reduced to NR data points which, in two 
dimensions, represent pairs of coordinates 1 2( , )i ix x . In this reduced set of NR data 
points, there exist data points P1 and P2 with largest Euclidean distance between them 
in the scatter plot :  
 
 
 
    Once points P1 and P2 have been identified, the algorithm calculates the equation of 
the straight line R1 which passes through these points P1 and P2 : 

 

 

    Next, the algorithm estimates the coordinates of the points 3 31 32( , )P p p=  and 
4 41 42( , )P p p=  as follows: the straight line R1 divides the scatter plot 1 2( , )x x  into two 

subspaces, being R1 the border between them. Data points which lie within one of 
these subspaces yield a nonzero result in Eq. (7). For example, data points lying 
above the straight line R1 yield a negative result in Eq. (7). There is then one data 
point 3 31 32( , )P p p=  which provides the most negative value of all possible outcomes 

1 2 , (1,2,.... )( , ) max ( , )i j NR i jd P P d P P∈=  (6) 

1 2 0 ; beingAx Bx C+ + =  (7) 

22 12 11 21 21 12 22 11( ), ( ), ( ) ( )A p p B p p C p p p p= − = − = − − −  (8) 
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dd((PP33  ,,  RR11))  ==  mmiinn  {{  dd((PPii ,,  RR11))  }}  

dd((PP44  ,,  RR11))  ==  mmaaxx  {{  dd((PPii  ,,  RR11))  }}  
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of Eq. (7), hence which also represents the point with the greatest Euclidean distance 
from the straight line R1 in the subspace above R1. In the same way, points in the 
other subspace, below the straight line R1, yield a positive result in Eq. (7). Again, 
there is one point 4 41 42( , )P p p=  that provides the most positive value of all possible 
results from Eq. (7), and which is also the point with greatest Euclidean distance from 
the straight line R1 in the subspace below R1. 
    Once the characteristic points of the parallelogram have been obtained, the 
algorithm computes either the slopes of the segments (

_____

1 3P P  and 
_____

1 4PP  or, equivalently _____

2 4P P  and 
_____

3 2P P ) in case of sub-Gaussian densities or the slopes of the diagonals 
(

_____

1 2PP  and 
_____

3 4P P ) in case of super-Gaussian densities in order to obtain the slopes of 
the ICA axes and the coefficients of the matrix W as in Eq. (9)  (see Figure 1): 

 
    Using the coefficients of matrix W, the algorithm computes the inverse matrix W-1 
and reconstructs the unknown source signals ( )s t  (see Eq. (3)). 
  
2.2   Further enhancements 
 
The computational order of the algorithm is polynomial: 
 

 2( )Comput Order DataPoints XColumns YRows− = ⋅ ⋅ (10) 
    
  As a further improvement, we propose the reduction of the number of points at the 
beginning of the algorithm with a random elimination through all the space of the 
joint distribution of the mixtures as long as enough data points are kept to correctly 
estimate the sources. A more elaborated proposal is eliminating those points of the 
joint distribution of the mixtures which lay within a calculated radius near the center 
of the joint distribution, because they are useless for the algorithm, due to its nature of 
computing contours using points whose Euclidean distances are the highest. From 
experimental results, we have derived equations (11) and (12) for the calculation of 
the radius based on the kurtosis and correlation of the mixture signals. 
     For sub-Gaussian mixtures, the algorithm will try to find the contour of the sensor 
signal distribution. In this case we determine the exclusion radius as follows : 
 
 
 
 
where α is a constant (experimentally, a value of α=7.5 was applied), ρ(x) is the 
correlation of the mixtures and  

 
 
     For super-Gaussian mixtures (positive kurtosis), the algorithm will search for high 
density regions of the scatter plot. Thus, the exclusion radius was calculated as: 

1

32 1212 21 42 12

22 31 11 11 41 11

;
p pa a p p

a p p a p p

−
   − −

= =   − −   
(9) 

2( ) 0.1
R x

x
α

ρ
= ⋅

+
 (11) 

2 2
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N

j
x x j x j

=

= +∑ (12) 
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3.    Simulations and Results 
 
The new algorithm, named as “LatticeICA”,  has been tested on various ensembles of 
artificial sensor signals with an arbitrary number of samples drawn at random from 
sub- and super-Gaussian distributions, as well as with real world speech signals.  To 
quantify the performance achieved we calculate both a crosstalking error E (W,A) of 
the original and recovered source signals as proposed by Amari et al. [2] as well as a 
component wise crosstalk. 
  
Application to separate speech signals. 
 
In this simulation the algorithm separate two super-Gaussian speech voice signals 
with 33684 samples each. The lattice was automatically computed to be 13 rows and 
13 columns, using TH = 149. The original and estimated matrices were:  
 
   
 
  
   The joint distribution of the mixtures points out the super-Gaussian nature of the 
sources (see Figure 2). The matrix performance index for this simulation was 

( , ) 0.104E W A = , with Crosstalk1 (Es1) = -35 dB and Crosstalk2 (Es2) = -32 dB. In 
Figure 2 it is shown how the algorithm searches for the lines of higher density instead 
of the contour plot. 
 

4.    Conclusions 
 
In this work, a new geometry-based method for blind separation of sources has been 
developed, which greatly reduces the complexity and computational load inherent in 
the standard geometrical ICA algorithms. This new algorithm is based on a 
tessellation of the input space where in each cell a code book vector is determined to 
represent the center of gravity of the local distribution of sample vectors. Depending 
on the type of distribution, the slopes of the border lines or the diagonals are 
determined to obtain the coefficients of the estimated mixing matrix W. The method 
lends itself for an easy hardware implementation and is also very intuitive. 
Furthermore, this method could be used to detect the perimeter or outlines in simple 
two-dimensional figures. In the future we will intend to implement this method for 
more than two signals working in the p-dimensional space. 
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1.5R x= ⋅  (13) 

1 0.70 1 0.72
;

0.30 1 0.27 1
A W   
= =   − −   

 (14) 
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Figure 2. Performance of the LatticeICA algorithm for a two real voice signals mixture. 
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