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        A two layered feedforward neural network is considered as Kohonen’s dot-product type 

SOM model which defines a winner function f from an input pattern set into an output 
unit set. It defines pattern classifiers through step by step self-organization.  What kinds 
of classifiers they can ultimately be and how they are attained asymptotically are the 
basic problems to be solved.  Our main result is that the property of being topographic 
can be preserved by appropriately choosing learning rates and hence the winner function 
becomes stable in this case.  

1. Introduction 
  
Consider a set of vectors which are eventually to be classified according to some 
similarity measure. We treat an unsupervised learning process to yield such topology 
preserving classification in its broad sense.   Typical networks which realize such tasks 
have been proposed by Kohonen and others. (See Kohonen 1995, Hulle 2000, and the 
references therein.)  In the case of the set of vectors of binary components, we discussed 
relations between topology preservation and mapping stability under certain learning rules. 
(Sakamoto and Kobuchi 2000, 2002; Sakamoto, Seki, and Kobuchi 2003) We continue 
the works to analyze Kohonen’s SOM and relate the stability of a mapping with its 
topology preservation. 
Kohonen’s  SOM formation algorithms comprise two basic stages. 
The first stage is a winner selection or competition:  When an input vector is applied to a 
network, each output unit computes corresponding output value.  Then a winner unit is 
determined depending on the output values.  In dot-product type, for example, a unit with 
the largest dot-product between the input vector and a weight vector associated with each 
unit is selected.  There can be many variations in this selection process and we may even 
choose more than one winner.  (Lee and Verleysen 2002) 
The second stage is a learning with cooperative characteristics: The connection strength 
(called weight) from an input unit to an output unit is updated if the output unit is the 
winner or if it belongs to the winner’s neighbour.  A learning rule specifies the amount of 
weight change as a function of present weight value and input value.  There can also be 
various variations in defining learning rules. (Hulle 1997) 
Once a particular SOM formation algorithm is given, one of the most important problems 

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 349-354



is what kind of classifier will be actually formed eventually and what is its stability. For 
Kohonen’s SOM algorithm, there are many simulation results to answer this question but 
as far as theoretical consideration is concerned, only a few works seem to exist and only 
for low dimensional cases. (Benaïm, Fort and Pagès 1997) 
In this note, we treat a dot-product type SOM algorithm, and analyze the stability of 
resulting classifier functions.  Our method is of combinatorial nature, and we introduce 
some new concepts which are suitable for our purposes.  Our point is that we do not 
assume certain topographic mappings a priori but derive them through their stability 
requirements. 
  
2. Two Layered Network as Pattern Classifier 
  
2.1. Network Scheme 
We consider a two layered feedforward network in which the input layer has n units and 
each of them is designated by an integer from 1 to n. That is, we have the set of input 
units .  Each input unit i takes a value x}...,,,{ n21VI = i from a closed interval of real 
numbers from 0 to 1.  Thus an input pattern is an n-dimensional real vector: x = (x1, x2, …, 
xn) where xi ∈ [0, 1] for i = 1, 2, …, n.  We consider an input pattern set I which is a 
subset of [0, 1]n, and assume that the number of the input patterns is finite. 
When there are m output units, each is also designated by an integer from 1 to m.  The set 
of output units is then .  There is a connection from }...,,,{ m21VO = IVi∈ to with 
weight value [0, 1].  The entire set of weight values are expressed in a matrix form  

W = (  ) and a  j-th row vector is designated by w

OVj∈
∈jiw

jiw j = (wj1, wj2, …, wjn) for . OVj∈
The network scheme is N = (VI, (VO, EO), I, W) where W is the set of m ×  n matrices over 
[0, 1].  We here consider a relation EO ⊆  VO ×  VO sometimes called a neighbourhood 
relation, which is reflexive and symmetric.  The relation can also be expressed by a 
function whereOV

OO 2V →:σ }),({)( OOV∈O Evuvu ∈=σ .  Note that )(uOσ  contains u 
itself and its neighbouring units defined by EO.   
  
2.2. Winner Function and Unsupervised Learning 
Consider a network scheme N = (VI, (VO, EO), I, W) with a weight matrix W∈W.  We 

assign each output unit  a value yOVj∈ j = = wi

n

1i
ji xw∑

=
j x for an input pattern x = (x1, x2, 

…, xn)∈  I.  We select a unique output unit which has the maximum output value.  That is, 
let k = arg and assign k to the input x.  (When there are more than one maximum 

output value unit, select, for example, the one with the smallest index.)  We call this a 
winner function f : I →V

}{max j
Vj

y
O∈

O where f( x ) = k.  A weight matrix W∈W thus determines a 
corresponding winner function f.  We write this correspondence as F: W  such that → I

OV
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F( W ) = f. 
Let x(p)∈I and f(x(p)) = k.  Then a standard SOM type learning for an input x(p) proceeds as   

  for j = 1, 2, …, m 
)(
)()(

{'j =
)(

kjif
kjif

Oj

Oj
p

j

σ
σα

∉
∈−+

w
wxw

w

where )1,0(∈α   is a learning rate and  is an updated vector of .   'jw jw
We write the above network as N(W,α ) = (VI, (VO, EO), I, W, W, α ) or simply (W,α )  
when the scheme is understood. 
Let p  take the value 1 if a proposition p is true and 0 if p is false.  Then the above 
update rule for wj can be written as follows. 
   For j = 1, 2, …, m,    )())((' )()(

j
pp

Ojj fj wxxww −∈+= ασ . 

  
3. Stability Conditions 
  
Let N(W,α ) be a network such that F(W) = f.  Consider an x'jy (p)-learning such that 

f(x(p)) = k which yields  = ( , , …, )'W '1w '2w 'mw T where T means the transpose of a 
matrix.   Let F( ) = .  For an arbitrarily fixed x'W 'f (q)∈I, let f(x(q)) = l.  We evaluate 

(x'f (q)) and find conditions which yield (x'f (q)) = f(x(q)).   
Let  be the output value of j unit for the input x'jy (q) after x(p)-learning.  That is, 

    =  x'jy 'jw (q)= )()()( ))())((( q
j

pp
Oj fj xwxxw −∈+ ασ for j = 1, 2, …, m. 

In order that (x'f (q)) = f(x(q)) = l, we should have for j = 1, 2, …, m. 'ly ≥ 'jy

Thus, after x(p)-learning, = f  if and only if the following condition holds. 'f
   For x∀ (q)∈I, let f(x(q)) = l.  Then  x'lw (q)≥   x'jw (q) for j = 1, 2, …, m . 

By substituting the updated weight vectors , we have 'jw

     )()( ))()(( q
l

p
Ol kl xwxw −∈+ ασ ≥ )()( ))()(( q

j
p

Oj kj xwxw −∈+ ασ  
     for j = 1, 2, …, m where l = f(x(q)) and k = f(x(p)). 
We have to consider the following four cases depending on the values of )(kl Oσ∈  and 

)(kj Oσ∈  as follows. 
  
  )(kj Oσ∈  )(kj Oσ∉  

)(kl Oσ∈  wl x(q)≥  wj x(q) )()( )( q
l

p xwx −α ≥ )()( q
lj xww −  

)(kl Oσ∉  )()( q
jl xww − ≥ )()( )( q

j
p xwx −α wl x(q)≥  wj x(q)
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Since wl x(q)≥  wj x(q) ( j = 1, 2, …, m) by assumption that f(x(q)) = l, the above conditions 
can be rewritten in a succinct form as below. 
Definition 1.  A network (W,α ) is said to be α - conservative if and only if the following 
condition holds. 
For any x(p), x(q)∈I, let k and l denote f(x(p)) and  f(x(q)), respectively. 
   If then for O

qp Eff ∈))(),(( )()( xx )()( )( q
l

p xwx −α ≥ )()( q
lj xww − )(kj Oσ∉ . 

   If then for O
qp Eff ∉))(),(( )()( xx )()( q

jl xww − ≥ )()( )( q
j

p xwx −α )(kj Oσ∈ . 
Then we have the following basic properties. 
Lemma 1. 
(W,α ) is α - conservative if and only if W and  defines the same winner function 
where  is an updated weight matrix after x

'W
'W (p)-learning for any x(p)∈I.   

Lemma 2.   
For α , 'α ∈  (0, 1) such that α ≥ 'α , if (W,α ) is α - conservative, then (W, 'α ) is 'α - 
conservative. 
Proof.  For α , 'α  in the Lemma, and arbitrary real numbers A and B, we have the 
following relations.  (i) If α A≥B and 0 B then ≥ 'α A≥B. (ii) If α A≤ B and 0 B then ≤

'α A B.  Using these relations, we can easily show the desired result. ≤
Definition 2.  A network W is said to be conservative if (W,α )   is α - c nservative for any o
α ∈ 1).  (0, 
  
By Lemma 2,  we let α  tend to 1 to have the following conservative condition. 
Lemma 3. 
For any x(p), x(q)∈I, let k and l denote f(x(p)) and  f(x(q)), respectively.  W is conservative if 
and only if the following holds. 
   If  then  forO

qp Eff ∈))(),(( )()( xx )()()( q
j

qp xwxx ≥ )(kj Oσ∉ . 

   If  then . O
qp Eff ∉))(),(( )()( xx )()()( q

l
qp xwxx ≤

Proof. (Omitted.)  
  
4. Topographic Condition 
  
Hence the conservative condition does not necessarily yield a dichotomy of dot-product 
input space,  we consider a bit more strict case as follows. 
Definition 3. W is said to be topographic if and only if the following holds. 
For any x(p), x(q)∈I,  
   if then and  O

qp Eff ∈))(),(( )()( xx )()()( q
l

qp xwxx >

   if then   O
qp Eff ∉))(),(( )()( xx )()()( q

l
qp xwxx ≤

where f = F(W) and l = f(x(q)).  
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Lemma 4.  
 W is topographic if and only if the following relation holds. 
For any x(p), x(q)∈I,  
    implies  and  )()()( q

l
qp xwxx > O

qp Eff ∈))(),(( )()( xx

    implies   )()()( q
l

qp xwxx ≤ O
qp Eff ∉))(),(( )()( xx

where f = F(W) and l = f(x(q)).  
  
It is easy to see that if W is topographic, then it is conservative.  When W is topographic, 
what can we say about the stability of corresponding winner function? 
Assume that a given W be topographic.  For anyα ∈  (0, 1) and x∈I, consider a step of x-
learning in (W, α ) to obtain 'W As noted above, W is .  α -conservative and F( 'W ) = = 
f. e analyze the conditions when 'W  bec es topographic. 

'f
 W om

For any x(p), x(q)∈I,  
(I)Let , which is equivalent to .  Then we 

have .  Evaluate x
O

qp Eff ∉))('),('( )()( xx O
qp Eff ∉))(),(( )()( xx

)()()( q
l

qp xwxx ≤ 'lw (q) - x(p)x(q) = {wl + ))(( xfl Oσ∈ α (x – wl)} x(q) 

- x(p)x(q) depending on the value of ))(( xfl Oσ∈ as follows.  
(I-a) ))(( xfl Oσ∉ : = wa∆ l x(q) - x(p)x(q) ≥  0. 
(I-b) ))(( xfl Oσ∈ : In this case, we have x x(q) > wl x(q) by assumption.  Then, 
  = {(1 - b∆ α )wl + α x } x(q) - x(p)x(q) > (1 - α )wl x(q) + α  wl x(q) - x(p)x(q)

        = wl x(q) - x(p)x(q) ≥  0. 
(II) If then by assumption.  In this case, we 
evaluate x

O
qp Eff ∈))('),('( )()( xx )()()( q

l
qp xwxx >

(p)x(q) - w x'l
(q)  = x(p)x(q) -{wl + ))(( xfl∈ Oσ α (x – wl)} x(q) depending on the 

value of ))(( xfl∈ efore. Oσ as b
(II-c) ))(( xfl Oσ∉ : = xc∆

(p)x(q) - wl x(q) > 0. 
(II-d) ))(( xfl Oσ∈ : In this case, as in (I-b), we have x x(q) > wl x(q) by assumption.  Then, 

d∆  = x(p)x(q) - {(1 - α )wl +α x } x(q) = ( x(p)x(q) - wl x(q)) - α ( x x(q) - wl x(q)) .  If we put 
A = x(p)x(q) - wl x(q) and C =  x x(q) - wl x(q)), then d∆  = A - α C ,  A > 0, and C > 0.   If we 
choose α  as less than A/C,  then d∆  > 0. 
This concludes that  is still topographic if 'W α  is selected appropriately.  Our main 
result is then summarized as follows. 
Theorem 1. 
Let (W, α ) be a network where W is topographic.  If  denotes an updated matrix after 
x-learning where x is an arbitrary input pattern, then  is also topographic for some 
appropriate learning rate 

'W
'W

α . 
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By the above Theorem and Lemmas, we see that once the topographic condition is 
attained, we can keep the same winner function by choosing appropriate non-zero learning 
rate for arbitrary sequence of x-learning.  This means that the topographic condition 
implies a stable winner function if we can choose arbitrary learning rate α ∈ (0, 1). 
  
5. Concluding Remarks 
  
This note tried to clarify what kinds of classifier functions are ultimately obtained in SOM 
algorithm.  If they are to be stable, what are the necessary and sufficient conditions?  We 
first found such conditions that a winner function f becomes stable under an ordinary 
learning dynamics as α -conservativeness.  Note that this is a stability condition of f for 
one-step learning.  We obtained the condition from the requirement that W and  
defines the same winner function where  is an updated weight matrix after any one-
step x-learning. Then we deduce the conservativeness concept as 

'W
'W

α -conservativeness for 
arbitrary α ∈  (0, 1).  Since the conservative condition does not necessarily yield a 
dichotomy, we consider a more strict case as topographic.  So the topographic property is 
introduced as a special case of conservativeness. The topographic property thus has the 
characteristics that the property itself (not only the winner function) can be preserved by 
appropriately choosing learning rates.  Note that there are inclusion relations of the three 
concepts. That is, W is topographic implies W is conservative, which implies W is α -
conservative for arbitrary α ∈  (0, 1).    All the analyses are done using dot-product (i.e., 
an inner product) as the means to choose a winner unit. 
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