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Abstract. Spiking neurons model a type of biological neural system
where information is encoded with spike times. In this paper, a new
method for decoding input spikes according to their absolute arrival times
is proposed. The output times, which are responses to different input
patterns, can differentiate these input patterns uniquely. Features of
Spiking Neural Networks (SNN) such as actual spike input time and
synaptic weights are utilized. Only a limited number of neurons are
needed to implement the decoding scheme.

1 Introduction

Spiking neurons model a type of biological neural system where information is
encoded with spike times. A neural spike is a discrete event within a continuous
time frame with spatio-temporal properties. It has been shown theoretically
that spiking neural networks that convey information by individual spike times
are computationally more powerful than neural networks with sigmoidal activa-
tion function neurons [4]. Neural network architectures based on spiking neu-
rons that encode information in individual spike times have yielded, amongst
others, a supervised classifer [1], a self-organizing map [7] and a network for
unsupervised clustering [5].
In this paper, a simple input arrival-time-dependent decoding scheme for a
spiking neuron with dynamically changeable membrane potential and synapse
weights is considered. It is shown that this scheme has a wide decoding range
and can be implemented using only a limited number of spiking neurons. This
decoding method has some good features including fast and wide-range decod-
ing.

2 Model of a Spiking Neural Network

The spiking neural network model employed is based on the Spike Response
Model (SRM) [3]. Input spikes come at times t1...tn into the input synapses of
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a neuron as shown in Figure 1.
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Figure 1: Neuron with excitatory ti
inputs and output tf .

The neuron generates a spike at time tf when the internal membrane potential
xf (t) crosses a threshold potential ϑ from below at time tf = min{t : xf (t) ≥
ϑ}. The threshold potential ϑ is assumed to be constant for the neuron. The
relationship between input spikes and the internal state variable xf (t) can be
described as follows:

xf (t) =
∑

i∈Γf

ki.wi.α(t − ti) (1)

ki is a dynamic variable which represents the peak of the spike response function
(Equation 2), wi is the synaptic weight, ti is the input spike arrival-time, and
α(t) is the Spike Response Function defined as follows:

α(t) =
t

τ
e1− t

τ (2)

τ represents the membrane potential decay time constant. The height of the
Post-Synaptic Potential (PSP) is modulated by parameter ki and synaptic
weight wi.

3 Input Arrival-Time-Dependent Decoding

The proposed scheme decodes absolute input times. It is composed of three
parts as shown in Figure 2(C). The first part (Figure 2(A)) of the model is
used for decoding input spike times according to their Inter-Spike Interval (ISI)
times, i.e. the times between two consecutive input spikes arrive at two dif-
ferent input synapses. Spike times, which represent a certain input pattern,
are decoded into output spike times. The input pattern spikes arrive at times
t1.....tn, with some minimum time resolution ∆t, into the input synapses. The
ISI1 block (Figure 2(A)) consists of two units: a) a neuron with excitatory
inputs; and b) an Excitatory Post Synaptic Potential (EPSP) unit. The EPSP
unit updates the dynamic variable k in Equation 1 after every synaptic input
according to the following equation:

ki =
β

ti
, k1 = 1 , i = 2, 3, ..., n (3)

In Equation 3, β is a small constant and i refers to the temporal order of the
input spikes, not the spatial number of an input synapse.
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Figure 2: (A) ISI1 or ISI2 blocks (B) Rank Order Coding (ROC) block (C)
The combined decoder system.

Equation 3 shows that the value of ki is inversely proportional to the input
spike time ti. The ISI1 block fires output spikes at certain times which can be
utilized to distinguish patterns whose order of input spikes are the same but for
which the actual spike times may be different. For instance, two patterns PA

and PB with spike times {tA1 = 1, tA2 = 2, tA3 = 3, tA4 = 4} and {tB1 = 1.5, tB2 =
2, tB3 = 2.5, tB4 = 3} can be distinguished by the output spike time tout1.
The ISI1 block output times are contained within a range of time, called the
output time window. Within this output time window, outputs can represent
inputs according to their ISI times. The synaptic weight values may be initially
set to be identical, as shown in Figure 2(A).
The ISI2 block (Figure 2(A)) has a construction and function similar to ISI1
block except the parameter ki is defined as follows:

ki = β ∗ ti, k1 = 1 , i = 2, 3, ..., n (4)

Using a combination of the ISI1 and ISI2 blocks produces a one-to-one corre-
spondence between inputs and outputs (refer to Appendix A).
As these two blocks can distinguish different patterns if and only if their input
spikes come in the same order but with various different arrival times, it is nec-
essary to have another part which distinguishes the order of arrival of the spikes
comprising a pattern. Rank Order Coding (ROC) [6] is a suitable approach to
distinguish the order of input spike arrivals. The ROC block is composed of
two units, as shown in Figure 2(B). One of these units utilizes an excitatory
neuron and the other unit an inhibitory-like neuron with a special function.
The weight values must be distinct in this block in order to produce distinct
output times. The shortest neuron activation time will result only when the
input spikes arrive in synaptic weight order.
Modifications in the original ROC block proposed in [6] are necessary to ac-
count for cases in which two or more input spikes arrive at the same time. In
such a case, the inhibitory neuron must be able to recognize that two or more

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 355-360



inputs have arrived simultaneously and compensate accordingly.
Real-time decoding of inputs is possible when the ISI1, ISI2 and ROC units
work simultaneously. Unique output spike combinations at tout1, tout2 and tout3

will be produced for all input patterns.
In the ISI1 block, all output spike times tout1 must be larger than the last input
spike time tmax of all the input patterns to be learned. This means that the
patterns to be learned must be known a priori in order to know the time range
of the input spikes for all the input patterns. Furthermore, all input spikes
have equal importance, so all spikes representing a pattern must be utilized to
determine the neuron membrane potential.
The proposed ISI1 block decoding scheme works as follows:

1. Each input pattern l is represented by a set of input spike times Pl[t1....ti....tn],
where ti ∈ R+, n is the number of input spikes defining the pattern.

2. The weights associated with each input synapse in the ISI block are ini-
tially identical.

3. For each input pattern check the neuron output firing time tout1:
if tout1> tmax go to step 4
if tout1< tmax decrease the synaptic weight values a little, repeat this step
again for the same pattern.

4. Step 3 is repeated for all input patterns until tout1> tmax.

The same scheme is used for ISI2 block in a similar way to get tout2> tmax.
An appropriate choice of threshold ϑ and initial weights must be found in order
for this decoding scheme to work properly.

4 Application of the Decoding Scheme

Sound localization was used as an interesting and useful application of the pro-
posed decoding scheme. The azimuth and elevation angles were to be deduced
from sound input data1. Sound localization was thought to be an appropri-
ate application because it can utilize the Interaural Time Differences (ITD).
ITD is defined as the difference between the arrival times of a sound signal to
each ear. In the proposed decoding scheme, the sound siganl itself can be used
directly without complex modifications such as those needed in the (HRTF)
approach [2].
Sensors representing right (R), left (L), front (F), back (B), above (AB) and
below (BL) were placed in their appropriate positions as shown in Figure 3(A).
The reception time of a sound at a sensor was determined by the first incoming
audio signal which exceeded a pre-determined sound level. Depending on the
sound source location with respect to the six sensors, spike arrival time will
be different from one sensor (input) to another. The decoder, Figure 3(B),

1Simulations were done using Matalb r© version 6.5 Release 13.
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will generate a set of output spikes for each input pattern. Echo effects were
neglected in this application. The set of {tout1,tout2,tout3} times represent the
sound source location.
To test the reliability of the decoding scheme, some samples which were not
learned were used. It was found that the decoder worked well even with the
new (not learned) sound source locations. The output spike times tout1 and
tout2 increased (or decreased) within an appropriate output spike time firing
range. tout3 time did not change as long as the order of input spike arrival
times was unchanged; tout3 was not affected by the actual input spike arrival
times. As a result, the three output times {tout1,tout2,tout3} could be used to
determine the position of a sound source quite accurately2.

5 Conclusions

As shown in this paper, SNN can process actual temporal signals in very close
to real-time in applications such as sound localization. Other applications in
which temporal information could be used include the decoding of ECG signals
with some preprocessing of data. The proposed scheme, in spite of its simplicity,
achieved good results in the application described above by effectively utilizing
inter-spike arrival time information.
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Appendix A

The one-to-one mapping of inputs to outputs of the decoder will be proved.
Assume that the potential function in the two ISI blocks has a sufficiently long
time constant so that α(t) of Equation 2 can be considered to work simply as
a linear function. It then follows that Equation 1 can be re-written as:

x(t) =
t

τ

n∑

i=1

ki.wi.u(t − ti) (5)

In Equation 5, u(t) is the Heaviside function. The slope of the function repre-
sented by Equation 5 is 1

τ

∑n

i=1
ki.wi at t → ∞. The slope is dependent on the

value of ki assuming τ and wi are constants. Assume si represents the slope of
the potential function after the arrival of input spike ti.
To prove that no coincident potential values are produced for different input
patterns after the last input spike has arrived, it is sufficient to show that the
slopes of two different input patterns cannot be equal. The following cases
cover all the worst case input pattern combinations. Assume two different in-
put patterns PA and PB have the same spike orders but different spike times
PA = {tA1 , tA2 , ......., tAn−1, t

A
n } and PB = {tB1 , tB2 , ......., tBn−1, t

B
n }. If the last spike

inputs have the relation tAn > tBn and sA
n−1 > sB

n−1, the potential functions of
PA and PB may intersect at some later time after the last input spike, i.e.,
sA

n < sB
n and then tAout1 = tBout1, for the ISI1 block; however, for the same pat-

terns PA and PB the ISI2 block makes the internal potential functions diverge
(sA

n > sB
n ) and thus tAout2 6= tBout2. If tAn < tBn and sA

n−1 > sB
n−1, the potential

slopes may intersect at some later time (sA
n < sB

n and then tAout2 = tBout2) for
the ISI2 block, while the ISI1 block would make the internal potentials diverge
(sA

n > sB
n ) and thus tAout1 6= tBout1. If tAn = tBn and sA

n−1 > sB
n−1, the ISI1

and ISI2 blocks would produce sA
n > sB

n and thus tAout1 6= tBout1. If tAn = tBn−1

and sA
n−1 > sB

n−1, then ISI1 block would produce tAout1 6= tBout1; Furthermore
if tAn = tBn−1 and sA

n−1 < sB
n−1, then ISI2 block would produce tAout2 6= tBout2.

Thus, all possible spike input sequences produce unique combination of outputs
at tout1 and tout1 of the ISI1 and ISI2 blocks which can be used to recognize a
particular input sequence.
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