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Abstract. In this paper, we propose fuzzy linear programming sup-
port vector machines (LP-SVMs) that resolve unclassifiable regions for
multiclass problems. Namely, in the directions orthogonal to the deci-
sion functions obtained by training the LP-SVM, we define membership
functions. Then by the minimum or average operation for these mem-
bership functions we define a membership function for each class. We
evaluate one-against-all and pairwise fuzzy LP-SVMs for some bench-
mark data sets and demonstrate the superiority of our fuzzy LP-SVMs
over conventional LP-SVMs.

1 Introduction

Since support vector machines are formulated for two-class classification prob-
lems [1], there are several ways to extend to multiclass problems. Vapnik [1]
proposed one-against-all classification, in which one class is separated from the
remaining classes. By this classification, however, unclassifiable regions exist.
Instead of discrete decision functions, Vapnik [1, p. 438] proposed to use con-
tinuous decision functions. Inoue and Abe [2] proposed fuzzy support vector
machines, in which membership functions are defined using the decision func-
tions. Abe [3] showed that support vector machines with continuous decision
functions and fuzzy support vector machines are equivalent.

Kreßel [4] used pairwise classification, in which an n-class problem is con-
verted into n(n − 1)/2 two-class problems and decision is made by voting.
But by this method also unclassifiable regions remain. To resolve unclassified
regions for the pairwise classification, Platt et al. [5] proposed decision-tree-
based pairwise classification. Unclassifiable regions are resolved but decision
boundaries are changed as the order of tree formation is changed. To solve this
problem Abe and Inoue [6] proposed pairwise fuzzy support vector machines.
This method is extended to least-squares SVMs [7].

In this paper, we extend our method to pairwise linear programming sup-
port vector machines (LP-SVMs). Namely, using the decision functions ob-
tained by training the LP-SVM we define membership functions in the direc-
tions orthogonal to the decision functions. Then, by the minimum or average
operation for these functions, for each class we define a membership function.
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We evaluate one-against-all and pairwise fuzzy LP-SVMs with minimum and
average operators using two benchmark data sets.

In Section 2, we explain two-class LP-SVMs, and in Section 3 we discuss
pairwise fuzzy LP-SVMs. In Section 4 we compare performance of the fuzzy
LP-SVMs with minimum and average operators with that of the conventional
LP-SVMs.

2 Two-class LP-SVMs

Let m-dimensional inputs xi (i = 1, . . . , M) belong to Class 1 or 2 and the
associated labels be yi = 1 for Class 1 and −1 for Class 2.

In the LP-SVM, we define the decision function as follows [8]:

D(x) =
M∑
i=1

αiH(x,xi) + b, (1)

where αi take on real values, H(x,x′) is a kernel, and b is a bias. Unlike the
conventional SVMs, the kernel needs not be positive semi-definite.

We consider minimizing

Q(α, ξ) =
M∑

i=1

(|αi|+ Cξi) (2)

subject to

yj

(
M∑
i=1

αiH(xj ,xi) + b

)
≥ 1− ξj for j = 1, . . . , M, (3)

where ξi are positive slack variables and C is a margin parameter.
Letting αi = α+

i − α−
i and b = b+ − b−, where α+

i ≥ 0, α−
i ≥ 0, b+ ≥ 0,

and b− ≥ 0, we can solve (2) and (3) for αi, ξi, and b by linear programming.
Similar to conventional SVMs, LP-SVMs have degenerate solutions [9].

Namely, αi are all zero. The difference is that LP-SVMs have degenerate
solutions when C is small as the following theorem shows.

Theorem For the LP-SVM, there exists a positive C0 such that for 0 ≤
C ≤ C0, the solution is degenerate.

Proof Because of the slack variables ξi,(3) has a feasible solution. Thus,
for large C, (2) and (3) have the optimal solution with some αi being non-zero.

For αi = 0 (i = 1, . . . , M), (3) reduces to

yi b ≥ 1− ξi. (4)

For b = 0, (4) is satisfied for ξi = 1. Then (2) is

Q(α, ξ) = MC. (5)

Thus, by decreasing the value of C from a large value, we can find a maximum
value of C, C0, in which (2) is minimized for αi = 0. For 0 < C ≤ C0, it is
evident that αi = 0 are the optimal solution for (2) and (3).
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3 Fuzzy LP-SVMs

Since there is no much difference in pairwise and one-against-all fuzzy LP-
SVMs, in the following we discuss pairwise fuzzy LP-SVMs.

3.1 Conventional Pairwise Classification

Let the decision function for class i against class j, with the maximum margin,
be

Dij(x) =
M∑
i=1

αijH(x,xi) + bij , (6)

where αij take on real values, bij is a scalar, and Dij(x) = −Dji(x).
For the input vector x we calculate

Di(x) =
n∑

j �=i,j=1

sign(Dij(x)), (7)

where n is the number of classes and

sign(x) =
{ 1 x > 0,
0 x ≤ 0 (8)

and classify x into the class

arg max
i=1,...,n

Di(x). (9)

If (9) is satisfied for plural i’s, x is unclassifiable.

3.2 Introduction of Membership Functions

To resolve unclassifiable regions, for the optimal separating hyperplanesDij(x) =
0 (i �= j) we define one-dimensional membership functions mij(x) in the direc-
tions orthogonal to Dij(x) = 0 as follows:

mij(x) =
{
1 for Dij(x) ≥ 1,
Dij(x) otherwise. (10)

Usingmij(x) (j �= i, j = 1, . . . , n), we define the class imembership function
of x using the minimum operator:

mi(x) = min
j=1,...,n

mij(x), (11)

or using the average operator

mi(x) =
1

n − 1
M∑

i �=j,i=1

mij(x). (12)

Now an unknown datum x is classified into the class

arg max
i=1,...,n

mi(x). (13)
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Table 1: Benchmark data specification

Data Inputs Classes Training data Test data

Iris 4 3 75 75

Numeral 12 10 810 820

Blood cell 13 12 3097 3100

Hiragana 50 39 4610 4610

4 Performance Evaluation

We evaluated our method using the data sets [10] listed in Table 1.
We used polynomial kernels: (1+xtx′)d and RBF kernels: exp(−γ‖x−x′‖2)

where γ is a positive constant. We determined the value of C by 5-fold cross
validation for the training data.

Here we show the performance of one-against-all and pairwise fuzzy LP-
SVMs. Table 2 shows the parameters, recognition rates (in %) of the one-
against-all LP-SVM and fuzzy LP-SVM, and the number of support vectors
(SVs). The recognition rates of the training data are shown in the brackets
when they are not 100%. Because of the large memory consumption, we could
only train LP-SVMs for iris and numeral data sets.

For one-against-all classification, continuous SVMs are equivalent to fuzzy
SVMs with minimum operators [3]. We can also prove that fuzzy SVMs with
minimum and average operators are equivalent. Thus in the table we show the
results of discrete SVMs and fuzzy SVMs (FSVMs). By the introduction of
membership functions, recognition rates were improved.

Table 3 shows the results for the fuzzy L1-SVMs. Comparing Tables 2 and
3, the recognition rates of the test data for the fuzzy L1-SVMs and fuzzy LP-
SVMs are comparable but the numbers of support vectors of LP-SVMs are
smaller. This is because in LP-SVMs, the sum of |αi| is minimized. Thus it
leads to a smaller number of support vectors.

Table 2: Recognition rates of one-against-all fuzzy LP-SVMs (%)

Data Parm SVM FSVM SVs

Iris d = 2 97.33 (97.33) 97.33 (97.33) 3

γ = 1 92.00 (96.00) 93.33 (97.33) 2

Numeral d = 2 99.15 99.63 8

γ = 1 99.27 (99.63) 99.63 (99.88) 7
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Table 3: Recognition rates of one-against-all fuzzy SVMs (%)

Data Parm SVM FSVM SVs

Iris d = 2 93.33 (96.00) 96.00 (96.00) 23

γ = 1 92.00 (96.00) 94.67 (97.33) 21

Numeral d = 2 99.15 99.39 15

γ = 1 99.02 (99.63) 99.27 (99.88) 17

Table 4 shows the parameters, recognition rates of the pairwise LP-SVM
and fuzzy LP-SVMs with minimum and average operators, and the number of
support vectors. The recognition rates of the training data are shown in the
brackets when they are not 100%.

The recognition rates of the fuzzy LP-SVMs with minimum and average
operators are almost the same. Thus, we can choose either of the operators.

As seen from Tables 2 and 4, there is no much difference between pairwise
classification and one-against-all classification.

Table 4: Recognition rates of pairwise fuzzy LP-SVMs (%)

Data Parm SVM FSVM (Min) FSVM (Ave.) SVs

Iris d = 2 97.33 (97.33) 97.33 (97.33) 97.33 (97.33) 2

γ = 1 94.67 (98.67) 94.67 (98.67) 94.67 (98.67) 2

Numeral d = 2 99.76 99.76 99.76 3

γ = 1 99.39 (99.63) 99.39 (99.63) 99.39 (99.63) 3

Blood cell d = 4 91.61 (98.58) 92.55 (98.61) 92.58 (92.39) 7

γ = 1 91.48 (96.74) 92.32 (96.84) 92.39 (96.87) 6

Hiragana d = 2 97.68 98.05 97.94 7

γ = 1 97.31 97.87 97.61 6

5 Conclusions

In this paper, we proposed fuzzy LP-SVMs that resolve unclassifiable regions
caused by conventional support vector machines. Namely, in the directions or-
thogonal to the decision functions obtained by training the LP-SVM, we define
membership functions. Then by the minimum or average operation for these
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membership functions we define a membership function for each class. We eval-
uated one-against-all and pairwise fuzzy LP-SVMs for some benchmark data
sets and showed that the generalization ability was improved by the introduc-
tion of membership functions.
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