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Abstract. In many situations, high dimensional data can be consid-
ered as sampled functions. We show in this paper how to implement
a Self-Organizing Map (SOM) on such data by approximating a theo-
retical SOM on functions thanks to basis expansion. We illustrate the
proposed method on real world spectrometric data for which functional
preprocessing is very successful.

1 Introduction
Many real-world applications produce high dimensional data that are quite

difficult to handle with traditional methods. A solution to overcome this type of
problems is to identify internal structure in the data and to use the correspond-
ing prior knowledge to simplify data analysis. A very general internal structure
model can be obtained by assuming that a high dimensional vector is in fact
a discretized function. This model covers for instance time series (which are
mappings between a date and a value), weather data (which are time-varying
geographical mappings), spectrometric data (a spectrum is a mapping between
wavelengths and “answers” from the observed object), etc. Functional Data
Analysis (FDA, see [10]) is an extension of traditional data analysis methods
to this kind of functional data. In FDA, each individual is characterized by one
or more real valued functions, rather than by a vector of R

p.
FDA methodology has numerous advantages over a basic multivariate anal-

ysis of high dimensional data. FDA allows for instance to work with irregular
measurement points in functional data by replacing sampled functions by simple
functional representations, thanks to a B-splines expansion or more generally
an expansion on any functional basis. Of course, the functional representation
can also be applied to regularly sampled functions. A side effect of the represen-
tation is that it can be used to smooth the data either individually or globally
(see [2]). Another interesting point is that most FDA methods can work di-
rectly on the numerical coefficients of the basis expansion, leading to far less
computational burden. An additional advantage of dealing with functions is
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the possibility of using functional preprocessing such as derivation, integration,
etc.

Many traditional data analysis methods have been adapted to functional
data, especially linear methods, such as principal component analysis (PCA)
and linear regression [10]. Recent developments of FDA include non linear
models such as multilayer perceptrons [3, 11] and non parametric models [6, 7].
Unsupervised functional data analysis has not received a lot of attention and
is currently limited to PCA and k-means like methods [1, 8].

In this paper, we propose an adaptation of the Self-Organizing Map [9] to
functional data. The proposed approach is a FDA inspired generalization of
previous works on curves clustering with the SOM such as [4, 5].

2 Function representation
The core of FDA methods consists in representing observations as smooth

functions. Let us consider indeed a high dimensional observation vector y ∈ R
n.

We assume that there are corresponding observation points x ∈ On, a function
g from O to R and measurement errors ε ∈ R

n such that:

∀k ∈ {1, . . . , n}, yk = g(xk) + εk

In this model, O can be R or a higher dimensional input space. Observation
points can be explicitly given or can be calculated thanks to prior knowledge on
data acquisition. In general, g is restricted to belong to a L2 functional space
defined on O. We don’t request the observation points to be identical for all
inputs and therefore, the first observation vector can belong to R

100 whereas
the second one belongs to R

125, etc.
Rather than working on y, FDA works on g. This function is reconstructed

from the observations thanks to traditional function approximation methods.
Such an approximation has to be performed for each observation vector and to
avoid computational problems, it is more efficient to use linear methods. More
precisely, we choose a topological basis of the considered functional space (e.g.,
a Hilbert basis of L2(O)), that is a series of functions (φi)i∈N that is dense
in the functional space. Then g is replaced by its projection on the vectorial
space spanned by the first p basis functions, where p is a meta-parameter of
the analysis. More precisely, the observation vector y ∈ R

n is replaced by a
vector α ∈ R

p such that the following reconstruction error is minimal:

n∑
k=1

(
yk −

p∑
i=1

αiφi(xk)

)2

As stated in the introduction, this approach allows to deal easily with irregular
sampling, as the approximation can be calculated independently for each input
vector y, even if each y belongs to a different vectorial space and has its own
observation points vector x. As long as the basis remains fixed, each input
vector is translated into a fixed size coordinate vector on the truncated basis.
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Choosing a low number of basis functions, i.e. a small p, is a crude way
to get rid of the measurement noise. A more sophisticated approach is to
keep a high number of basis functions and to add a roughness penalty to the
reconstruction error. Details can be found in [10] when each curve is smoothed
independently and in [2] when the smoothing is performed on the whole set of
curves.

3 Self-Organizing Map on functions
Kohonen’s Self-Organizing Map (SOM) can be theoretically applied to data

in a normed vectorial space, regardless of its dimension. Let us indeed recall the
main steps of the inner loop of the SOM algorithm: for each input vector, the
first step is to calculate the winning neuron defined as the one which minimizes
the distance between its prototype vector and the input vector. This operation
is based only on the norm on the vectorial space. The second step is to update
the prototype of the winning neuron and of its neighbors thanks to the following
update formula: pt+1 = pt + η(y − pt), where pt is the prototype vector and y
the input vector. This update step is based only on vectorial operations.

Of course, the actual implementation in a functional space introduces tech-
nical problems as it is not possible to exactly manipulate arbitrary functions.
The obvious solution is to approximate functions. This was done implicitly in
previous works which were focused on regularly sampled functions. As they
can indeed be considered as high dimensional vectors, the SOM can be di-
rectly applied to them, as proposed in [4, 5]. This solution is quite limited as
it cannot deal with irregularly sampled functions. A more important draw-
back is that the approximation might be quite poor. Let us consider indeed
an arbitrary function f . The implicit assumption of the simple multivariate
approach is that ‖f‖2 is correctly approximated by a quantity proportional to∑n

i=1 f(xi)2, where (xi)1≤i≤n are the observation points. This approximation
is good only if there is no observation noise, if f is sufficiently regular and if n
is large. When we depart from those assumptions, it is much better to estimate
f from the observations and then to approximate vectorial operation and norm
calculation on the representation rather than on the raw data.

We therefore propose to use a more flexible method than the multivariate
approach, inspired by the method used in [1] for k-means: rather than working
on raw data, we first represent each input function by calculating its approxi-
mation on a fixed truncated basis. Then we submit to the SOM the coordinates
of the representation on the chosen basis, after having preprocessed them so as
to have an equivalence between comparison of coordinates and comparison of
functional norms (in [1], the k-means algorithm is implemented directly on the
coordinates). Indeed, we need to approximate ‖f‖2 for a represented function.
If f � ∑p

i=1 αiφi, we have: ‖f‖2 � ∑p
i=1

∑p
j=1 αiαj〈φi, φj〉, where 〈u, v〉 de-

notes the scalar product between two functions u and v. In general, the basis
is neither orthogonal, nor normed. For instance, when dealing with functions
from R to R, B-spline basis, which are not orthogonal, are often used because of
their very interesting practical properties: numerical stability, locality, efficient
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calculation, etc. Nevertheless, the matrix Φ(p)ij = 〈φi, φj〉 is symmetric and
positive, and has therefore a Cholesky decomposition, i.e. there is a matrix
U(p) such that Φ(p) = UT (p)U(p). Then obviously ‖f‖2 � ‖U(p)α‖2.

In order to approximate the theoretical functional SOM, we submit to a clas-
sical numerical SOM U(p)α where α is the coordinate vector of the considered
input function. The representation step is consistent with vectorial calculation
as it is linear. If f and g have coordinate vectors α and β on the truncated
basis, then λf + µg has coordinate vector λα + µβ, and therefore, after trans-
formation, is manipulated by the SOM as U(p) (λα + µβ) = λU(p)α+µU(p)β.
Therefore, vectorial operations can be directly implemented on the transformed
coordinates.
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Figure 1: Clustering of spectra

4 An application to spectrometric data

4.1 The data

We study in this section spectrometric data from food industry. Each ob-
servation is the near infrared absorbance spectrum of a meat sample (finely
chopped), recorded on a Tecator Infratec Food and Feed Analyses (we have 215
spectra). More precisely, an observation consists in a 100 channel spectrum of
absorbances in the wavelength range 850–1050 nm. Data can be downloaded
from the statlib site1. Each spectrum is associated to a content description of
the meat sample (obtained by analytic chemistry), that is the percentage of
fat, water and protein contained in the sample. Our goal is to classify the spec-
trum and see whether their shapes are related to the corresponding chemical
composition.

The spectrum are very regular and do not seem to contain any measurement
noise. Moreover, they are sampled at regular wavelength and with a good res-
olution (each spectrum belongs to R

100). In this situation, the only advantage
of the functional approach is to reduce the dimensionality. Indeed, we have
projected the spectrum on a B-spline basis using 50 functions, which divides

1http://lib.stat.cmu.edu/datasets/tecator
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Figure 2: Maximum, mean and minimum fat contents for each neuron

by 2 the amount of data. As the running time of the SOM is proportional to the
dimension of the input space, this reduction allows to perform twice as more
runs as with the original data in a given amount of time. In a data exploration
context, this allows to test more preprocessing, numerical parameters, etc.

According to the original contributor of the data, the more interesting in-
formation is the fat content. We have therefore used a one dimensional SOM
with 10 neurons to order the spectra. The result is given by figure 1 (for space
reasons, the one dimensional SOM is represented on two rows that should be
read from left to right and from top to bottom): each rectangle displays all
curves clustered in the corresponding neuron and the median curve in bold.
The y range of each cell has been scaled individually so as to enhance readabil-
ity: a side effect is to hide the fact that the mean value is growing from left
to right. Results are almost identical to the one obtained by the multivariate
approach (i.e., using a classical SOM on the original R

100 input vectors): as the
original spectra are noiseless and the sampling is good, the approximation of
the functional norm provided with the Euclidean norm in R

100 is good enough
to reproduce the functional results. It is clear in the obtained classification that
the mean value dominates the classification as the shapes of curves associated
to one neuron can be quite different.

The problem with this classification is that it has poor explanation power
with respect to the fat content, as shown on figure 2 (left). Indeed the mean
fat content of spectra clustered in each neuron does not increase with the rank
of the neuron in the SOM linear structure. Moreover, the variability is quite
important in each cluster. We can calculate the quality of the clustering thanks
to the quantization error for the fat, that is the root mean square error obtained
when we approximate the fat of each spectrum by the average fat of the spectra
of its cluster. We obtain here a very high quantization error: 10.8 (the fat range
is [0.9, 49.1]). The quantization error for the classical SOM is exactly the same.
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Figure 3: Spectra clustered after centering and scaling

4.2 Centering and scaling

When the mean value dominates the classification, it is tempting to work on
individually centered data, i.e. to subtract from each spectrum its mean value.
To emphasize even more the shape of the spectrum, we can also scale each
spectrum to unit variance. Those preprocessing can be implemented on a mul-
tivariate point of view, or on a functional point of view. In the later case, a
function g is replaced by gc defined by x �→ g(x)− 1

b−a

∫ b

a
g(u)du (for centering).

The resulting function is scaled into gs defined as:

gs(x) =
gc(x)

1
b−a

√∫ b

a
(gc(u))2du

.

The multivariate version can be considered as an approximation of the func-
tional ones. Both versions improve the quality of the clustering with respect
to fat content explanation, as summarized in table 1.

Centered Centered and scaled
Multivariate 6.82 5.93
Functional 6.74 5.88

Table 1: Quantization errors for various preprocessing

The slight improvement observed in the case of the functional implementa-
tion seems to come from a better estimation of the centering and scaling values.
Figure 3 gives the classification results (for the functional implementation with
scaling). It is obvious that the mean effect has disappeared and that shapes
now dominate the classification. Figure 2 (right) shows that the preprocess-
ing (scaling) improves the clustering explanation power with respect to the fat
content.
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Figure 4: Spectra clustered thanks to their second derivatives

4.3 Functional transformation

As we are dealing with functions, we can implement functional preprocessing.
In order to focus on the shape of the spectra rather than on the absorbance
values, we calculate the second derivatives of the spectra (see [6, 7]). As they are
very smooth, we simply estimate those derivatives with finite differences. Then,
we represent the obtained functions on a B-spline basis (with 50 functions) and
submit transformed coordinates to a linear SOM. Results are summarized by
figure 4. It is clear that the mean effect has completely disappeared and that
shapes of clustered curves are more similar (curves on the right of the linear
SOM have two maxima rather than one). Moreover, figure 5 (right) shows that
the clustering has much more explanation power with respect to the fat content
than the first one: indeed, the quantization error is now 3.01. In fact, the
second maxima associated to high fat content corresponds to the specific peak
of absorbance associated to fat alone, a chemical result that can be rediscovered
thanks to the functional approach. We obtain similar but slightly worse results
with the first derivatives of the spectra. The quantization error grows to 4.08
and the classification itself is less satisfactory: we obtain curves with two peaks
at both ends of the SOM linear structure, a fact that appears on figure 5
(left) where fat does not grow with the index of the neuron. Nevertheless, both
functional preprocessing give better result than standard centering and scaling:
the functional approach introduces new preprocessing schemes that can be very
useful on adapted data.

5 Conclusion
We have proposed in this paper a simple way to implement a self-organizing
map on functional data. Even on noiseless and regularly sampled curves, the
functional approach allows both to consistently reduce the size of the data and
to implement functional transformations that extend the practical possibili-
ties of the SOM. Those results have been confirmed on phoneme data from the
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Figure 5: Maximum, mean and minimum fat contents for each neuron

TIMIT database: those very noisy data can be reduced from 256 measurements
to only 31 splines coefficients which even give a slightly better classification.
Further experimental work is needed to investigate the robustness of the pro-
posed approach to irregularly sampled data.
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