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Abstract. FAMR (Fuzzy ARTMAP with Relevance factor) is a FAM
(Fuzzy ARTMAP) neural network used for classification, probability es-
timation [3], [2], and function approximation [4]. FAMR uses a relevance
factor assigned to each sample pair, proportional to the importance of
that pair during the learning phase. Due to its incremental learning capa-
bility, FAMR can efficiently process large data sets and is an appropriate
tool for data mining applications. We present new theoretical results
characterizing the stochastic convergence of FAMR.

1 Introduction

An incremental learning algorithm can be defined by the following characteris-
tics [12]: i) it is able to learn additional information from new data; ii) it does
not require access to the original data, used to train the existing system; iii)
it preserves previously acquired knowledge; and iv) it is able to accommodate
new data categories that may be introduced with new data.

When designing and implementing data mining applications for large data
sets, we face processing time and memory space problems. In this case, in-
cremental learning is a very attractive feature. In the context of supervised
training, incremental learning means learning each input-output sample pair,
without keeping it for subsequent processing. Very few algorithms perfectly fit
into this description of incremental learning. The FAM family of neural net-
works [5] is the best known example. The FAM model has been incorporated
in the MIT Lincoln Lab system for data mining of geospatial images because
of its computational capabilities for incremental learning, fast stable learning,
and visualization [11].

Many pattern recognition applications require an estimate of the posterior
probability P (C|a), where C is a class index and a is an input pattern. This
task also allows classification because one can select the class C with the maxi-
mum conditional probability. Another classical application of neural networks
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is the prediction (approximation) of functions that are known only at a certain
number of points.

FAMR is a FAM-based neural network used for classification, posterior
probability estimation [2], [3], and function approximation [4]. It is a gener-
alization of another FAM architecture: PROBART [10]. FAMR uses a rele-
vance factor assigned to each sample pair, proportional to the importance of
that pair during the learning phase. This adds more flexibility to the training
phase, allowing ranking of sample pairs according to the confidence we have in
the information source. The training sequence may include sample pairs from
sources with different levels of noise.

We analyze how the relevance factors influence the convergence of the learn-
ing process in a FAMR. Without answering completely this question, we de-
scribe here several convergence properties of FAMR. In Section 2 we review the
basic notations and the learning algorithm used in FAMR. Section 3 analyzes
the stochastic convergence of FAMR, and Section 4 contains conclusions and
open problems.

2 A description of FAMR

A FAM consists of a pair of fuzzy ART modules, ARTa and ARTb, connected
by a an inter-ART module called Mapfield. For a presentation of FAM, we
suggest [9]. The details of the FAMR architecture can be found in [3].

The FAMR learning paradigm is based on the following stochastic approx-
imation procedure. Let us consider a sequence of independent experiments ac-
cording to the finite probability distribution P (a1), . . . , P (an), where P (ai) ≥ 0
is the probability of outcome ai,

∑n
i=1 P (ai) = 1. These objective probabili-

ties are not known and will be estimated at each step based on the previous
observations. A criterion for a qualitative differentiation of the experiments is
represented by the relevance associated to each experiment. The relevance qt is
a real positive finite number directly proportional to the importance of the ex-
periment considered at step t (t = 1, 2, . . .). For example, one could assign the
relevance factor according to the confidence in the training data source, when
several sources are used. The relevance can be also related to the closeness of
the decision boundaries.

The following estimation procedure makes use of both the results and the
relevances of the present and previous experiments.

The subjective probability of outcome ai (i = 1, . . . , n) at step t (t = 1, 2, . . .)
is given by:

wt(ai) = wt−1(ai) + At (δt(ai)− wt−1(ai)) (1)

where: if at step t we get outcome aj , δt(aj) = 1, and δt(ai) = 0 for j 6= i;
w0(ai) ≥ 0 is the initial subjective probability,

∑n
i=1 w0(ai) = 1; q0 ≥ 0 is the

initial relevance, Qt =
∑t

s=0 qs, and At = qt/Qt (At = 0 for Qt = 0).

Theorem 1. wt(ai)
t→ P (ai) in probability iff Qt

t→∞.
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Proof. The proof can be found in [1].

Let w
(n)
t (ai) be the subjective probabilities at step t (t = 1, 2, . . .), for n

possible outcomes. What is happening if at some step we get a new outcome,
an+1? Assuming we have w

(n)
0 (ai) = 1/n (i = 1, . . . , n), the new subjective

probabilities w
(n+1)
t (ai) for n + 1 possible outcomes can be obtained by the

following relations:{
w

(n+1)
t (an+1) = q0/(n + 1)Qt

w
(n+1)
t (ai) = w

(n)
t (ai)− w

(n+1)
t (an+1)/n, i = 1, 2, . . . , n

(2)

Relations (2) will be used in the dynamic allocation of ARTb categories
(Step 2 in Algorithm 1.)

Mapfield weight wab
jk can be considered an estimate of the posterior proba-

bility P (k|j). This enables us to use formula (1) to update the weights wab
jk:

w
ab(new)
Jk =


w

ab(old)
jk if j 6= J

w
ab(old)
JK + At(1− w

ab(old)
JK )

w
ab(old)
Jk (1−At) if k 6= K

(3)

Let Q be the vector [Q1 . . . QNa ]. Na and Nb are the number of categories
in ARTa, respectively ARTa, initialized with 0. The training pair formed by
input vector a and output vector b can be learned by the FAMR Mapfield
algorithm given in Algorithm 1.

Based on Theorem 1, can we say that wab
jk a good estimate of P (Ib|Ia),

where Ia and Ib are intervals based around input pattern a, respectively output
pattern b? Feedback via match tracking alters this estimation (see [10]). One
way to avoid this problem is to eliminate match tracking.

Eliminating match tracking is not always convenient, because it controls
category proliferation in ARTa. Meanwhile, it is difficult to say something
about this probability approximation in the presence of match tracking, since
in this case wab

jk is not necessarily a good estimate of the posterior probability
with respect to the already processed data. However, in our experiments, match
tracking has not significantly altered probability estimation.

3 Theoretical results

We aim to analyze more carefully relation (1) and the FAMR learning algo-
rithm.

By imposing restrictions to qt, Theorem 1 can be strengthened, and a con-
vergence rate can be computed. The restrictions imposed to qt are natural:
an observer who intends to learn objective probabilities from examples has to
have sufficient confidence in the results of the experiences.

Theorem 2. For 0 ≤ q0 < ∞, 0 < a ≤ qt < ∞ (t = 1, 2, . . .), wt(ai) converges
in the mean square to P (ai).
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Step 1. Accept (a,b) with relevance factor q.
Step 2. If necessary, create a new category K in ARTb:

Nb = Nb + 1, K = Nb

if Nb > 1 then
wab

jK = q0
NbQj

for j = 1, . . . , Na {append new component to wab
j }

wab
jk = wab

jk −
wab

jK

Nb−1 for k = 1, . . . ,K − 1; j = 1, . . . Na {normalize}
endif

Step 3. If necessary, create category J in ARTa:
Na = Na + 1, J = Na

QJ = q0 {append new component to Q}
wab

Jk = 1/Nb for k = 1, . . . , Nb {append new line to wab}
Step 4. J,K are winners or new added nodes

if Nb wab
JK ≥ ρab then

{learn in Mapfield}
QJ = QJ + q
wab

JK = wab
JK + q

QJ
(1− wab

JK)

wab
Jk = wab

Jk

(
1− q

QJ

)
for k = 1, . . . , Nb, k 6= K

else
perform match tracking and restart from step 3

endif

Algorithm 1: One iteration in the FAMR Mapfield algorithm.

Proof. For any t ≥ 1, we obtain from (1):

E (wt(ai)− P (ai))
2 =

q2
0 (w0(ai)− P (ai))

2

Q2
t

+
1

Q2
t

E

(
t∑

s=1

qs(δs − P (ai))

)2

+

+
2q0 (w0(ai)− P (ai))

Q2
t

E

(
t∑

s=1

qs(δs − P (ai))

)
(4)

Since {δs − P (ai)}s≥1 are zero biased independent random variables, we
have:

E (wt(ai)− P (ai))
2 =

q2
0 (w0(ai)− P (ai))

2

Q2
t

+
P (ai)(1− P (ai))

t∑
s=1

q2
s

Q2
t

(5)

Applying Stoltz’s Lemma, it results: E (wt(ai)− P (ai))
2 t→ 0.

Theorem 3. For q0 ∈ [0, b], qt ∈ [a, b] (t = 1, 2, . . .), where a and b are any
two real numbers 0 < a ≤ b < ∞, we have: wt(ai)

t→ P (ai) with probability
one.
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Proof. Our proof is based on the Stochastic Approximation Theorem [7]. We
have obtained an alternative proof using Kolmogorov’s criterion [6].

Let St =
∑t

s=1 q2
s . We can compute an upper limit for the convergence rate

wt(ai)− P (ai).

Theorem 4. If conditions in Theorem 3 are true then, for any real ε > 0, the
following inequality holds almost surely, except for a finite set of terms:

|wt(ai) − P (ai)| ≤ |w0(ai)− P (ai)|
q0

Qt
+

+ (1 + ε)

√
2P (ai)(1− P (ai))St log log [P (ai)(1− P (ai))St]

Qt
(6)

Proof. We use a LIL–type theorem for martingales (see [8]), for the martingale
wt(ai) − P (ai). The powerful martingale theory allows us to bypass the re-
striction for random variables to be independently and identically distributed,
required in the limit theorems of classical probability theory.

We can state now our main result:

Theorem 5. If match tracking is not used then, for each ARTa category j
(j = 1, . . . , Na) and each ARTb category k (k = 1, . . . , Nb), we have:

1. If 0 ≤ q0 < ∞, 0 < a ≤ qt < ∞ (t = 1, 2, . . .), then wab
JK converges in the

mean square to P (K|J);

2. If q0 ∈ [0, b], qt ∈ [a, b] (t = 1, 2, . . .), where a and b are any two real
numbers 0 < a ≤ b < ∞, then wab

JK
t→ P (K|J) both with probability one

and in the mean square, and the convergence rate has almost surely the
upper limit (6), except for a finite set of terms.

4 Conclusions and problems to be investigated

The FAMR algorithm expands the range of FAM applications by allowing to
assign a relevance factor to each training pair. The FAMR learning process in
the Mapfield module is based on stochastic approximation and is influenced by
the relevance factors of the training pairs. Our theoretical results characterize
the convergence and the convergence rate of the approximation. We have at
least two open problems:

1. Assuming that we have a set of vector pairs with fixed relevances, how
do we select from it an optimal training set?

2. Given a training set, how do we optimally assign relevances to the training
pairs?

”Optimal” in both cases refers to providing the fastest FAMR learning.
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