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Abstract. Recent neurobiological data has demonstrated that some
neurons communicate with each other via the timing of individual spikes.
The possibility of a neural code based on time-structured spike trains is
a departure from established theories based on rate coding. Precisely
how these time-structured spike trains communicate information is still
open for debate. In this paper we consider the possibility that these spike
trains communicate discrete internal neuronal states that are generated
from the stabilised orbits of a chaotic attractor.

1 Introduction

Previous research has demonstrated that deterministic chaos can play a central
role in neural information processing [1, 5]. Methods of chaos control have been
used to stabilise Unstable Periodic Orbits (UPOs) that represent the dynamic
memory states of a chaotic neural network. The advantages of this have been
discussed elsewhere [3, 2, 4]. This previous work has used neuron models whose
output represents an average firing rate. Although this is a common approach
in neural modelling, recent experimental evidence suggests that firing rates are
inadequate for describing neuronal activity. For example, behavioural experi-
ments have shown that the time it takes a subject to react after the onset of a
stimulus is too short for neurons to determine their response based on average
firing rates [11]. Many recent theories of neural coding suggest that informa-
tion is conveyed not in firing rates but in the relative timing of neuronal spikes,
referred to as temporal coding [7, 11]. Furthermore, experimental results have
shown that cortical neurons in vitro and noisy integrate-and-fire model neurons
driven by periodic currents accurately reproduce temporally structured spike
trains which can support a spike-time neural code [10].

This paper considers the relationship between chaos and temporal coding
in spiking neural networks. The approach used here is to investigate neuronal
models that have internal dynamics governed by a chaotic attractor and an
output consisting of threshold-triggered constant-amplitude spikes. In the ab-
sence of control, the internal chaotic dynamics ensure that a chaotic spike train
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is generated by such neurons. In other words, the timing of the spikes is ape-
riodic, indicating that the neuron is in a transient state. UPOs can then be
stabilised on the internal dynamics of the neuron using time delayed feedback
control. This results in a periodic spike train from the neuron determined by
the particular orbit that has been stabilised. Section two of this paper de-
scribes a chaotic spiking model which incorporates delayed feedback control
and presents some preliminary results obtained from the model. Section three
considers how UPO based neural codes can be decoded using multiple delay
connections.

2 Chaotic Spiking Model

This model is based on the Spike Response Model presented in [6], commonly
used to model networks of spiking neurons. The following equations define
system behaviour:
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where u;(t) is the activation of neuron i, tgf ) firing time of neuron i, F; is the set
of all firing times of neuron i, I'; is the set of neurons with synaptic connections
to neuron 7, 7;(-) is the kernel which implements the refractory period of the
neuron, w;; is the weight of the connection from neuron j to neuron i, ;;(-) is
the kernel which implements the post synaptic potential generated in neuron i
by an impulse from connected neuron j, t§°’> it the time of a internal chaotically
driven impulse in neuron i, G; is the set of chaotic impulses for i, and &;(-) is
the kernel which models the response to the chaotic impulses.

Neuron i will fire whenever its activation wu;(t) reaches a threshold value
v. After firing, the kernel 7; generates the refractory response of the neuron,
which is defined by n;(z) = —noH(z)e [—x /7] where 7 is the amplitude of the
refractory response, H is the Heaviside step function, and 7, is the decay time
constant of the response. The kernel ¢;;(-) which implements the post synaptic
after-potential is defined by €;;(x) = H(x)exp[—z/7;;] where 7;; is the decay
time constant for the post synaptic after-potentials. The kernel which models
the response to the chaotic impulses is defined by &;(x) = H(z)exp[—z/T]
where 7, is the decay time constant for the response to chaotic impulses.

An efficient discrete-time version of this model was implemented using first-
order recursive digital filters to approximate the three kernel types:
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Figure 1: A chaotic sequence of spikes generated by the SPIKE system

The refractoriness of the neuron is modelled by a dynamic threshold imple-
mented using the filter ugt) (n) = noyi(n) + rz(t)uz(-t) (n — 1) which is summed
with the static threshold v. The output of neuron i is represented by y; € [0, 1].

Synaptic input is modelled by ug) (n) = wi;y;(n) +r§;)u§f)(n —1). The output
of the filter for the chaotic impulses is given by u!” (n) = Bz;(n)+r\“u{” (n—1).
Each filter uses a relaxation factor with time constant p defined by r(*) =
exp[—T/p;] in which T is the size of the time step for the simulation.

The set of chaotic impulses G; was generated using the Aihara equation
[1] with added delay-feedback control and with tEC) (0) set to a value chosen
randomly from the attractor:

gi(n+1) = wtl? (n) — af (! (n)) +a (3)
9 (n) = gi(n) + k(gi(n) — ¢\ (n — ) (4)

w, a and a are the constants of the Aihara equation, k(< 0) is the control
constant and v is the time delay. Figure 1 shows a sample of output from a
chaotically driven spiking neuron with no delay-feedback control (k = 0).

When delayed feedback control is applied to the chaotically driven spiking
neuron (i.e. k < 0), it is driven towards a periodic firing pattern. The period
of the pattern is determined by the value of the delay variable ¢. The graphs
in Figure 2 show the spike trains generated by feedback control initiated at
t = 0.153 using delay ¢ = 2 (Figure 2(a)) and ¢» = 3 (Figure 2(b)): The first
elicits a period 5 response, the second a period 22 response.

The periodic signal produced by the stabilisation of a UPO in the dynamics
of a neuron can form the basis of neural coding. In essence, the UPO is an
internal state of the neuron that is communicated by a unique periodic spike
train to other neurons. Since chaos is the basis of this behaviour, the neuron
has a theoretically infinite number of UPOs available to it, although there is
no guarantee that all of them can be stabilised. This gives the neuron a rich
set of internal states at its disposal together with a vocabulary of spike trains
with which states can be communicated to other neurons.
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Figure 2: Two periodic spike trains obtained by applying delay feedback control
with (a) ¥ =2 and (b) ¢ =3
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Figure 3: The first experimental run

2.1 Decoding

The time-structured spike trains generated by stabilising UPOs on a chaotic
attractor can be decoded using multiple time-delayed synaptic connections [4].
Delays in the signaling between neurons is inherent in natural neuronal systems.
A time structured sequence of spikes can be recognised by the receiving neuron
if the time delays in these synaptic connections are such that each spike in the
sequence has a coincidental effect on the potential rise at the axon hillock of
the receiving neuron.

A network of two spiking neurons was constructed to demonstrate the
use of multiple time delay connections in decoding time-structured spike se-
quences. Neuron A was chaotic, with delayed feedback control being applied
at t = 0.127. Neuron B was a passive spiking neuron (i.e. it is not chaotically
driven). Five time-delay connections are made from A to B, with the following
delays: 0.004,0.007,0.008,0.015,0.019. The lengths of the transmission delays
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Figure 4: The second experimental run

are such that the all five of the spikes in the periodic orbit in Figure 2(a) will
have a coincidental effect on neuron B. This model was subject to two experi-
mental runs. In the first run, the delay on the feedback control ¢) was set to 2,
stabilising a period five spike response from neuron A (Figure 3(a)). Neuron B
did not fire during the initial chaotic sequence, but began to fire periodically
once the control had been applied to neuron A (Figure 3(b)), showing that
neuron B had ‘decoded’ the period 5 spike train. In the second run, the delay
on the control was set to 5, which stabilised a period 10 orbit on neuron A.
Neuron B produced three spikes during the transient phase after the control
had started (because it detected three period 5 spike trains in the transient
which matched the delays on the connections). Once the period 10 orbit was
established in neuron A, neuron B produced no further spikes, demonstrating
its selective sensitivity to the particular time-structure of the period 5 spike
train generated by neuron A with ¢ = 2.

2.2 Conclusion

Some of the periodic spike trains which are stabilised by delay feedback control
are long (e.g. the period 22 orbit in Figure 2(b)). This would be a significant
drawback for real-time applications where fast responses are needed if it was
necessary to wait for the whole period of the spike train to be completed before
it can be decoded. However, since the inter stimulus intervals of these periodic
trains are generated from a chaotic attractor, then by definition the interval
between any two spikes in the train is unique to that train. In other words,
two consecutive spikes of a stabilised UPO spike train are sufficient to uniquely
identify the whole of that spike train.

A question at the heart of many discussions about neural coding is whether
information is conveyed solely by the rate at which a neuron fires (rate coding),
or whether the precise time of a spike relative to other spikes is the conveyor
of information (time-structured coding). Evidence for both have been found
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in natural neuronal systems [8, 9]. The UPO based model presented above is
a unique contribution to the time-structured theory of neural coding. Current
research in to neural coding has not yet properly considered the possibility that
the time-structured spike trains of neurons are generated from the stabilised
orbits of a chaotic attractor. The advantage of this approach is that such
neurons would have a very large (theoretically infinite) number of discrete states
(UPOs), each described by a unique time-structured spike train.
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