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Abstract. 
 
A novel face recognition approach is proposed, based on the use of compressed discriminative 
features and recurrent neural classifiers. Low-dimensional feature vectors are extracted through 
a combined effect of wavelet decomposition and subspace projections. The classifier is 
implemented as a special gradient-type recurrent analog neural network acting as an associative 
memory. The system exhibits stable equilibrium points in predefined positions given by the 
feature vectors of the training set. Experimental results for the Olivetti database are reported, 
indicating improved performances over standard PCA and LDA-based face recognition 
approaches. 
 
 
1. Introduction 
 
Face recognition has represented for more than one decade one of the most active 
research areas in pattern recognition. A plethora of approaches have been proposed 
and evaluation standards have been defined, but current state-of-the-art solutions still 
need to be improved in order to cope with the recognition rates and robustness 
requirements of commercial products. Most of the approaches may be classified into 
two categories [2]: 
a) geometric feature-based techniques, relying on the identification of specific 
components of a face such as eyes, nose, mouth, and distances among them 
b) holistic template-based techniques, usually based on projecting the original (high-
dimensional) images onto lower dimensional subspaces spanned by specific basis 
vectors. Eigenfaces [13]  represent a de facto standard for the second approach and, 
although superior solutions exist, still defines a performance reference against which 
any new method is compared.  
Face recognition systems usually include three modules, i.e. the preprocessing stage, 
feature extraction, and classification. Although the novelty aspect of the present paper 
is mainly related to the classifier, we present key elements of the other components in 
the following: 
• similar to other approaches [3, 14], we perform a multiresolution decomposition 
of the original images based on the Discrete Wavelet Transform (DWT) and keep 
only the low-frequency components (Figure 1). Besides dimensionality reduction this 
procedure is also known to offer face expression invariance. 
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Figure 1: a) original image; b) DWT decomposition at level 1 (upper left corner image 
represents the level-1 approximation coefficients); c) DWT decomposition at level 2 

 
 
• we apply 2 standard linear subspace projections of the low-resolution face 
images, performing Principal Components Analysis (PCA) and Linear Discriminant 
Analysis (LDA) [1, 12]. PCA is basically a compression procedure based on a linear 
projection technique on a subspace spanned by the principal eigenvectors (those 
corresponding to the largest eigenvalues) of the input covariance matrix. When 
applied to face processing, those basis vectors are called eigenfaces and define the 
directions along which the variance of the original images is maximized). PCA 
approximates the original images based on the most expressive features, which may 
not be optimal in terms of discriminating power. Most discriminant features would be 
better for classification purposes, and one of the classical choices is related to Fisher’s 
LDA approach that identifies directions in space along which separation of the 
projections is maximized. Fisherfaces are obtained when LDA is applied to the 
original face images, and discriminant waveletfaces if low-resolution DWT filtered 
images are processed [3]. According to LDA theory, the procedure yields (C-1) 
projection directions (C is the number of distinct classes) and is sensitive to small 
training databases made-up of high-dimensional vectors. This is why usually PCA is 
initially performed on the available images and then LDA acts on the compressed 
feature vectors. In this respect, performing DWT prior to LDA has the additional 
benefit of already reducing the dimensionality of the vectors to be processed. While 
LDA is not always superior to PCA in terms of recognition accuracy, the PCA+LDA 
approach has been successfully applied in face recognition applications.  
 
 
2. The Neural Classifier 
 
The neural classifier is implemented as a special recurrent high-order associative 
memory. Associative memories represent one the most interesting applications of 
artificial neural networks and many solutions have been reported in the literature. 
Basically, a set of patterns is to be stored by using a training database and a proper 
learning procedure. In the testing phase, the system should output correct results even 
if noisy, incomplete or distorted data is applied as input. Both feedforward and 
recurrent approaches have been used for designing associative memories. When 
recurrent networks are used for implementation, desired memories are usually stored 
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as stable states of dynamical systems. When certain conditions are met such systems 
are globally stable and the dynamics evolves from any initial state towards one 
particular stable equilibrium and no other complex behavior can occur [6]. Such 
systems should satisfy the following requirements [9]: 
- no spurious memories (stable states which do not correspond to the desired ones) 

should exist 
- the number of desired equilibria should be arbitrarily large and the dimension of 

the corresponding basins of attraction should be controllable 
- the addition/elimination of an equilibrium should be performed without 

redesigning the whole system. 
The main drawbacks of existing solutions are related to the presence of many spurious 
states and limited memory capacity. In order to alleviate these, we use a special 
gradient-type analog dynamic system defined according to: 
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where X={xi} defines the state-vector, N is the order of the system, and V(X) is the 
associated Lyapunov function. A well-known result states that all isolated minima of 
V(X) are asymptotically stable states of system (3) [6]. The key feature of our 
approach lies in the special way of constructing  the function V(X) as a sum of 
individual functions exhibiting good space localization properties, having deep 
minima in predefined locations and been practically constant in rest [5]: 
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where M is the number of memories to be stored, wm are scalar weights, and gm(X) is: 
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dp(X,Xm) is the distance induced by the Lp measure defined on the N-dimensional 
state vector space. In Figure 2 we present an example of the function V(X) for a 
system with N = 2 and M = 4 stable equilibrium points, namely, (–1, –1); (–1, 1); (1, –
1); (1, 1). We used a common value for σm = 0.25, and the weights vector was {wm} = 
{1, 1, 1, 1}. 
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Figure 2: a) Example of a Lyapunov function as in equation (1) (M=4, N=2); 

b) upside view 

 
 
The proposed design procedure has a number of important advantages, including: 
- a clear correspondence between the set of memories to be stored and the 

equations governing the system dynamics 
- a transparent interpretation of the effect of the parameters (centers, weights, 

width) on the time and state-space evolution 
- guaranteed convergence based on Lyapunov stability theory 
- implementation advantages in terms of limited number of interconnections 
Face recognition based on such a recurrent associative memory works as follows: the 
feature vectors (PCA or PCA+LDA projection coefficients) are extracted from the 
training set and memorized into the network as stable equilibrium points. When a test 
face image is presented to the system the corresponding feature vector is first computed 
and then applied as initial condition to the (neural) dynamical system, which will 
eventually settle down to one of the stable equilibrium points, hopefully to one obtained 
from a training image of the correct person. According to the positions of the training 
images, complex basins of attractions are developed around the equilibrium points, 
which may include besides the available test images many others, e.g. ones 
corresponding to occluded, distorted or noisy versions of the training set. In this respect, 
it is worth mentioning that proper choice of the individual σm parameters offers an 
additional handle for shaping those basins of attraction. Although a learning algorithm 
could provide optimized performances, we set their values according to a heuristic rule, 
namely as a fraction of the distance of vector Xm from its closest neighbour (neighbours 
originating from the training images of the same person are excluded). Using distinct σm 
values leads to basins of attraction having unequal widths, which may  explain why test 
vectors closer (in terms of Euclidean distance) to a training image of an erroneous 
person may still fall into the basin of the correct one). 
Moreover, the proposed neural classifiers exhibits implicit modularity, in that storing 
additional memories doesn’t influence the positions of the previously stored ones and, 
more importantly, the dynamics of the system and thus the final solution is influenced 
only by a small fraction of the existing stable equilibria (ideally, only by a single stable 
point whose basin of attraction the test vector falls into). 
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3. Experimental Results 
 
Intensive computer simulations have been performed in order to assess the 
performances of each preprocessing technique compared to the standard eigenface 
procedure. The experiments were conducted on the Olivetti database, which 
comprises 10 distinct images of 40 persons, and includes variations in pose, light 
conditions, scaling, and expression. Each image has 112x92 pixels. In order to cope 
with the requirement of the DWT transform that the dimensions are a power of 2, we 
first interpolate the original images to yield 128x128 pixels resolution, and then apply 
2-level DWT decomposition using Daubechies-4 mother wavelet. Only the low-pass 
approximation coefficients are selected, as 32x32 images. Next, we applied PCA and 
LDA using a training database of 5 images per person, randomly selected from the 
available 10, and the rest for the testing phase. The training and test datasets were not 
overlapping. After performing DWT, several distinct feature extraction procedures 
were used: a) standard PCA (eigenfaces) using Euclidean measure; b) (PCA+LDA) 
using Euclidean measure; c) PCA+neural associative memory; d) PCA+LDA+neural 
associative memory. 
The degree of dimensionality reduction obtained by PCA is chosen according to the 
following criteria: a) small reconstruction error (energy loss is typically less than 
10%); b) theory indicates that maximally allowed dimension of the vectors subject to 
LDA is (No_train-C), where No_train is the number of training images and C is the 
number of classes. In our case we have No_train=200 images and C=40 classes. We 
performed separate tests using PCA feature vectors with 150, 100, and 50 dimensions. 
Recognition performances are given in Table 1, including average error rates after 10 
trials. Results obtained by the (discriminant waveletfaces+neural associative memory) 
combination match some of the top performant solutions reported in the literature. 
 
 
Table 1: Correct recognition rates (average values over 10 trials, 5 training images per person; 
L2 – Euclidean distance; NFL – Nearest Feature Line; NFS – Nearest Feature Space) 
 

System Error rate (%) 
Eigenfaces [10] 10 
Pseudo-2D HMM [10] 5 
Convolutional Neural Network [11] 3.8 
Linear SVM [7] 3 
Kernel PCA [13] 2.5 
Waveletface + L2 [3] 7.5 
Discriminant Waveletface + L2 [3] 5.5 
Discriminant Waveletface + NFL [3] 5 
Discriminant Waveletface + NFS [3] 3.9 
ARENA [11] 2.9 
Waveletface + PCA + Recurrent Associative Memory 5.4 
Discriminant Waveletface + Recurrent Associative Memory 3.1 
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4. Conclusions 
 
The proposed approach yields accurate results, comparable to the best results reported 
on the Olivetti database. The key aspect is related to the structure of the neural 
classifier, which is attractive in terms of modularity and memory capacity. Due to the 
analog nature, high processing speed could be expected when the proposed solution is 
hardware implemented. Further work will be dedicated to the possibility of inferring 
invariance to standard transformations (translation, rotation, scale variation) for the 
proposed system. 
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