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Abstract: The contribution concerns the design of a generalised functional-link 
neural network with internal dynamics and its applicability to system 
identification by means of multi-input single output non-linear models of auto-
regressive with exogenous inputs’ type. An evolutionary search of genetic type 
and multi-objective optimisation in the Pareto-sense is used to determine the 
optimal architecture of that dynamic network. The minimised objectives 
characterise the accuracy of the network and its complexity. Two case studies 
are included, referring to the identification of an evaporator from a sugar 
factory, and of a hydraulic looper from a hot rolling mill plant. 
Keywords: non-linear system identification; dynamic functional-link network; 
multi-objective optimisation; genetic algorithms; industrial processes. 

 
 
1. Introduction 
 
Artificial Neural Networks (ANNs) are commonly used as a data-based technique in 
performing non-linear system identification of complex processes. For this purpose, 
models with adequate memory are required. Therefore, the ANNs have to be provided 
with dynamic elements and appropriate learning methods [4]. A first approach refers 
to neural networks with external dynamics, e.g. static ANNs equipped with tapped 
delay lines [4,8], the latter increasing the dimensions of the ANN’s input space. A 
better approach is achieved by providing the ANN with internal dynamics [4]. This 
kind of network processes multi-inputs and does not require past values of process 
measurements as current inputs. 
The Functional-Link Neural Network (FLNN) has been developed as an alternative 
architecture to the well-known Multi-Layer Perceptron (MLP) net with application to 
both function approximation and pattern recognition [9]. The main advantage of the 
FLNN is a reduced computational cost in the training stage, while maintaining the 
approximation performance of the MLP network. The FLNN with external dynamic 
elements has been generally used to perform system identification [9]. The present 
contribution presents the introduction of dynamic elements within the FLNN 
structure, in a generalised manner, along with the formulation of its design as a 
problem of multi-objective optimisation. The latter is solved by using genetic 
algorithms. Experimental results illustrate the efficiency of presented approach. 
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2. Generalised dynamic functional-link neural network 
 
The Generalised Dynamic Functional-Link Neural Network (GDFLNN) has a feed-
forward architecture (Fig.1) with a number of non-linear enhancement hidden nodes, 
referred to as functional links. The suggested GDFLNN is characterised by a variable 
set of functional links. The initial inputs of the net Nnun ,...,1=, , are functionally 
expanded by a sub-set of orthogonal trigonometric functions to constitute the actual 
inputs of the non-linear neuron, , 1,...,mv m N M= + , given by the following set: 

)}}sin({)},cos({,{ nnunnun ukiujiu
nn

⋅π⋅⋅⋅π⋅⋅ ; cos sin= 1,..., ; = 1,...,n n n nj S k S  

where, for each initial input nu , 
nui indicates the presence (value of 1) or absence 

(value of 0) of the functional expansion, and cos
nS  and sin

nS  are the orders of 
functional expansion corresponding to the cosine and sine terms, respectively, varying 
from 1 to a pre-specified maximum order of maxS . At least one initial input of the net 
has to be subject of the non-linear enhancement. A fixed order of functional 
expansion has been considered for all net inputs in previous approaches [9]. 
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Figure 1: The structure of the generalised dynamic functional-link neural network: N 
inputs, M functional expansion terms, local activation feedback (iLAF=1), local output 
feedback (iLOF=1), one non-linear activation unit (of hyperbolic tangent type) and one 
output; q-1 stands for the linear operator of time shifting; A,B,C,D are polynomials. 

 

The GDFLNN integrates conveniently an Auto-Regressive Moving Average  
(ARMA) filter that can be placed (Fig.1): either before the non-linear activation unit 
of the neuron, the resulting network being a DFLNN with Local Activation Feedback 
(LAF); or on the back connection from the network output to the neuron’s input, the 
resulting network being a DFLNN with Local Output Feedback (LOF); or on both 
places. If none of the internal dynamic structures is considered, iLAF = 0 and iLOF = 0, 
then the static FLNN [9] results. 
The parameters defining the architecture of GDFLNN are given by the following sets: 

},;{};,;{;},;{ CDLOFABLAF,...,1
sincos nminmiSSi Nnnnun =  

where for the LAF filter mB represents the numerator order and nA denotes the 
denominator order, and for the LOF filter mD denotes the numerator order and nC 
represents the denominator order. These architecture’s parameters are determined 
either by a rather difficult trial-and-error process in a pre-defined space, or by means 
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of an optimisation technique as described in the next section of the paper. 
For a given architecture, the parameters of the GDFLNN are the connection weights, 
the coefficients of filter(s), and the bias term. These parameters are determined with 
an extended, Dynamic Back-Propagation (DBP) algorithm [6]. The latter minimises 
the sum of squared errors between the data which have to be approximated and the 
approximating values provided by the GDFLNN. The DBP is integrated into the 
optimisation search, when the potential solutions are evaluated for their fitness. 
The design of the GDFLNN is based on three sets of representative process data as 
follows [2,8]: a training data set used for model identification; a data set for 
validation used to select the best identified model(s); a data set for model testing. To 
characterise the resulted model accuracy and validity, a post-training analysis is 
applied to the response of identified models [2]. A resulted correlation coefficient Rc 
(R-value), between the network outputs and the approximated values, close to 1 
indicates that there is a good fit of those data. 
 
3. Genetic evolving of GDFLNN 
 
The specification of the optimal GDFLNN architecture and related parameters can be 
done by a hierarchical Genetic Algorithm (GA) [5], as it is explained in the following. 
Evolutionary algorithms of genetic type are stochastic search and optimisation 
methods principally based on computational models of fundamental processes, such 
as selection, recombination and mutation [1,3,5]. An algorithm of this type begins 
with a set (population) of parameters’ estimates (genes), called individuals 
(chromosomes) appropriately encoded. Each one is evaluated for its fitness in solving 
a given optimisation task. At each iteration (algorithm time-step), the most fit 
individuals are allowed to mate and bear offspring. 
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Figure 2: Hierarchical formulation of chromosome for the design of the generalised 
dynamic functional-link neural network. 

 

Fig. 2 presents the hierarchical structure of the chromosome that is used for the design 
of GDFLNN. The highest level 1 controls the activation (the value of ‘1’ is assigned) 
or deactivation (the value of ‘0’ is assigned) of the functional expansion for each 
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network’s initial input, and of the dynamic elements. The involved parameters are 
binary coded. The lowest (second) level contains the parameters of the functional 
expansion and of the dynamic internal structures. These parameters are coded as 
integer values. During the genetic search, the inactive parametric genes remain within 
the chromosome for possible use in latter generations. The standard genetic 
operations of recombination and mutation are applied independently to each level of 
genes. The search space is defined by assigning certain maximal values for the orders 
of functional expansion, Smax, and of ARMA filter(s), mmax and nmax, respectively. 
A multi-objective approach is adopted for the design of an optimal GDFLNN. Two 
categories of objectives are considered for minimisation, characterising the 
approximation accuracy of the network and its complexity: 1O = the sum of squared 
errors that characterise a certain architecture of GDFLNN and its training data set; 

2O  = the sum of squared errors that characterise a certain architecture of GDFLNN 

and its validation data set; NnSSO nnn ,...,1;sincos
2 =+=+  = the number of active 

functional expansions corresponding to each net’s input; AB3 nmON +=+  = the 
number of coefficients of active LAF filter; CD4 nmON +=+  = the number of 
coefficients of active LOF filter. The following priority assignment is considered: 
objectives 1O  and 2O  have the same priority of high level; the remaining objectives 
have the same priority of low level. 
Multi-objective Optimisation based on GA (MOGA) seeks to optimise the 
components of a vector-valued cost function. The solution is not a single point, but a 
family of points known as the Pareto-optimal set [3,5]. Each point in that surface is 
optimal in the sense that no improvement can be achieved in one component of the 
objectives’ vector without degradation in at least one of the remaining components. 
For the genetic evolving of the GDFLNN, the general MOGA procedure described in 
[3,5] has been adopted and applied as it is detailed in [6]. 
 
4. Applications 
 
To implement the presented neural approach, the following were used and extended: 
the Neural Network Toolbox [2], and the standard GA Toolbox [1]. For the 
applications described in the sequel, the search space for the genetic procedure was 
defined by setting the following parameters: Smax=5, and mmax=nmax=3. The 
evolutionary search was carried out for 30 generations, with 30 individuals in a 
population. During the genetic search, the GDFLNNs were trained (batch mode) for 
500 epochs. The best architecture of GDFLNN found at exit was trained again for 
3000 epochs. The models described in the following have as inputs different process 
inputs sampled at the current time k, and different process outputs sampled at 
previous time k-1. No other past process measurements are necessary, as the 
GDFLNN has internal dynamics represented by the ARMA filter(s). 
Identification of an evaporator. In a first case study, real data from a sugar factory 
[11] were considered. The investigated process refers to the heater and the first 
section of an Evaporation Station (ES). The results related to the identification of the 
“evaporator” sub-system of ES are presented in the following. The considered inputs 
of the process are: uP,1 – the steam flow to the input of ES; uP,2 – the steam 
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temperature at the input of ES; uP,3 – the juice temperature after heater. The modelled 
output is yP – the juice temperature after section 1 of ES. The data stored during one 
month, every TS = 10 seconds, were used to develop a neural model based on 
GDFLNN: yP[k] = f (uP,1[k],uP,2[k],uP,3[k], yP[k-1]), where f denotes the mapping 
performed by the net and k denotes the normalised sampling time. 
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Figure 3: Evaporator, results of system identification with the GDFLNN, expanded data 
sets of 3000 rows: validation data (left figure) and testing data (right figure). 

 

To design the model, a spectral analysis was performed. Based on this, a low-pass 
filtering by means of appropriate discrete-time Butterworth filters of 4th order was 
applied to reduce the noise and the amount of data used in the network learning. The 
training data, containing 3000 rows of measurements, were decimated using each 10th 
sampled value. The best results of identification obtained with the GDFLNN are 
presented in Fig.3, corresponding to validation and testing data sets from another 
month of plant exploitation. As exemplification, the resulted optimal architecture of 
GDFLNN is characterised by the following parameters: 

P,1 P,1

cos sin 1;u uS S= =
P,3 P,3

cos sin1, 4;u uS S= =
P P

cos sin5, 4;y yS S= = mB=2, nA=3; mD=1, nC=3. 

Identification of a hydraulic looper. In a second case study, real data from a 
hydraulic looper in a hot rolling mill [10] were considered. 
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Figure 4: Hydraulic looper, results of system identification with the GDFLNN (training 
data: October 2002), testing data from October 2003: measured force in step response 
(force control) test (left figure), and angular position in force hysteresis (position 
control) test (right figure). 

 

The following measured data were used, as provided by a monitoring system in 

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 115-120



performing certain tests on the process: uP,1 – reference force; uP,2 – servo-valve 
reference position; yP,1 – measured force in the hydraulic cylinder; yP,2 – measured 
angular position of the looper. 
The GDFLNN was used to identify different models, among which the following 
ones: yP,1[k] = f1 ( uP,1[k], uP,2[k], yP,1[k-1] );   yP,2[k] = f2 ( yP,1[k-1], yP,2[k-1] ), where fi, 
i=1,2 denote the mappings realised by the neural networks and k represent the 
normalised sampling time. Fig.4 presents the obtained results of system identification, 
demonstrating that the developed models f1 (left figure) and f2 (right figure) have a 
validity of one year with respect to the processed data. 
 
5. Conclusion 
 
The used genetic procedure represents a semi-automatic method of selecting the 
appropriate network architecture for the task of non-linear system identification. The 
user must only assign certain parameters for the genetic search. This has been found 
to be easier than manually selecting the network architecture. Current research is done 
in investigating the application of the suggested approach to fault detection and 
isolation of technical processes [7]. 
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