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 Abstract: Probability distribution mapping function, which maps multivariate 

data distribution to the function of one variable, is introduced. Distribution-
mapping exponent (DME) is something like effective dimensionality of 
multidimensional space. The method for classification of multivariate data is 
based on the local estimate of distribution mapping exponent for each point.  
Distances of all points of a given class of the training set from a given 
(unknown) point are searched and it is shown that the sum of reciprocals of 
the DME-th power of these distances can be used as probability density 
estimate. The classification quality was tested and compared with other 
methods using multivariate data from UCI Machine Learning Repository. The 
method has no tuning parameters. 

 

 

Introduction 
In this paper we deal with distances in multidimensional space and try to simplify a 
complex picture of probability distribution of points in this space introducing 
mapping functions of one variable. This variable is the distance from the given point 
(the query point x [3]) in a multidimensional space. From it it follows that mapping 
functions are different for different query points and this is the cost we pay for 
simplification from n variables in n-dimensional space to one variable. We will show 
that this cost is not very high – at least in the application presented here. 
The method proposed is based on the distances of the training set samples xs, 
s = 1, 2, … k from point x similarly as in methods based on the nearest neighbors 
[1][5]. It is shown here that the sum of reciprocals of the q-th power of these 
distances, where q is a suitable number, it is convergent and can be used as a 
probability density estimate. It will be seen that the speed of convergence is the better 
the higher is the dimensionality and the larger q.  
The method reminds Parzen window approach [4], [5] but the problem with the direct 
application of this approach is that the step size does not satisfy a necessary 
convergence condition.  
Because of exponential nature of estimation using q, it is very close to intrinsic 
dimension of data or correlation dimension [9] and its estimation by the Grassberger-
Procaccia’s algorithm [10][11]. The essential difference is that q is understood 
locally, i.e. for each point x separately, and the correlation dimension is the feature of 
the whole data space. It will be seen, that although q has different objective here, the 
algorithm is, in fact, a simplified version of Grassberger-Procaccia’s algorithm.  
Throughout this paper let us assume that we deal with standardized data, i.e. the 
individual coordinates of the samples of the learning set are standardized to zero mean 
and unit variance, and the same standardization constants (empirical mean and 
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empirical variance) are applied to all other (testing) data. This transformation does not 
mean any change in the form of the distribution, i.e. uniform distribution remains 
uniform, etc. 

Probability distribution mapping function 
Let a query point x be placed without loss of generality in the origin. Let us build 
balls with their centers in point x and with volumes Vi  , i =1, 2, ... A complex picture 
of probability distribution of points in the neighborhood of a query point x can be 
simplified to a function of a scalar variable. We call this function a probability 
distribution mapping function D(x, r), where x is a query point, and r the distance 
from it. More exact definitions say that probability distribution mapping function 
D(x, r) of the neighborhood of the query point x is function �=

),(

)(),(
rxB

dzzprxD , 

where r is the distance from the query point and B(x, r) is the ball with center x and 
radius r. Distribution density mapping function d(x, r) of the neighborhood of the 

query point x is function ),(),( rxD
r

rxd
∂
∂= , where D(x, r) is a probability 

distribution mapping function of the query point x and radius r.  For illustration see 
Fig. 1. 
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Fig. 1. Data in a multidimensional space and corresponding probability distribution 
mapping function and distribution density mapping function. 

Power approximation of the probability distribution mapping function 
Let us approximate the probability distribution mapping function by parabolic 
function in form D(x, rn) = const.(rn) �  . This function is tangent to the vertical axis in 
point (0, 0) and let it go through some characteristic points of the distribution. 
Definition. The power approximation of the probability distribution mapping function 

D(x, rn) is function rq such that const
r

rxD
q

n

→),(   for +→ 0r  . The exponent q is a 

distribution-mapping exponent. The variable �  = q/n is the distribution mapping ratio. 

     We often omit a multiplicative constant of the probability distribution mapping 
function. The distribution-mapping exponent is influenced by true distribution of the 
points of the learning set in En, and by boundary effects, which have the larger the 
influence, the larger the dimension n and the smaller the learning set size [1], [6].  
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Distribution mapping exponent estimation 
Let the learning set U of total mT samples be given in the form of a matrix XT with mT 

rows and n columns. Each sample corresponds to one row of XT and, at the same time, 
corresponds to a point in n-dimensional Euclidean space En, where n is the sample 
space dimension. The learning set consists of points (rows) of two classes c ∈ { 0, 1} , 
i.e. each row (point or sample) corresponds to one class. Then, the learning set 
U = U0∪U1 , U0∩U1 =∅ , Uc = { xcs} , s = 1, 2, … Nc, c = { 0, 1} . Nc  is the number of 
samples of class c, N0 + N1 = mT , and  xcs={  xcs1, xcs2,… xcsn}  is the data sample of 
class c. We use standardized data, i.e. each variable xcsj (j fixed, s = 1, 2, ... mT, c = 0 
or 1 corresponds to the j-th column of matrix XT) has zero mean and unit variance.  
Let point x ∉ U be given and let points xcs of one class be sorted so that index i = 1 
corresponds to the nearest neighbor, index i = 2 to the second nearest neighbor, etc. In 
the Euclidean metrics, ri  = ||x, xci || is the distance of the i-th nearest neighbor of class 
c from point x. From the definition of the distribution mapping exponent it follows 

that q
ir should be proportional to index i, i.e. 

kir q
i = ,   i = 1, 2, ... Nc,   c = 0 or 1,                                       (1) 

and where k is a suitable constant. Using a logarithm we get 
)ln()ln( ikrq i +′= ,   i = 1, 2, ... Nc .                                     (2) 

The system of these Nc equations with respect to unknown q can be solved using 
standard linear regression for both classes. Thus we get two values of q,  q0 and q1. To 
get a single value of q we use the weighted arithmetic mean, q = (q0N0 + q1N1)/ 
(N0 + N1) . 
At this point we can say that q is something like an effective dimensionality of the 
data space including true distribution of points of both classes and boundary effect 
and related to point x. In the next chapter we use it directly instead of dimension. 

All learning samples approach 

Let us define                             �
=−
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k
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where C is a constant. We show below, that )(xpc
 is a probability density estimate. 

The series q
ir1 converges with the size of ri for q > 1 and thus we have no reason to 

limit ourselves to the nearest k points and we can use all points in the learning set 
using k = Nc, c = 0 or 1. In practical procedure for each query point x we first 
compute the distribution mapping exponent q using (2) by standard linear regression. 
Then we simply sum up all components q

ir1 excluding the nearest point. This is made 

for both classes simultaneously getting numbers S0 and S1 for both classes. Then we 
can get the Bayes ratio or a probability estimation that the point x∈En  is of class 1:  
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Then for a threshold (cut) θ chosen, if θ>)(xR  or θ>)(1 xp  then x belongs to class 1 
else to class 0.  
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Probability density estimation 

Assumption 1: Let the points in the Euclidean space En be distributed uniformly in 
the sense that the distribution of each of the n coordinates is uniform. Let i be the 
order number of the i-th nearest neighbor to the point x. Let ri be the distance of the i-
th nearest neighbor of the given point x ∈ En from point xi. Let D  be a constant, 
q ∈ (1, n) be a constant, and iD  be the mean value of the variable q

ir , and let it hold 

                                                             iDDi =  .  

Theorem 1   
Let Assumption 1 be valid, and let i∆  be mean of q

i
q

ii rr 1−−=∆ , iD  be mean of 

q
ii rD = , iV  be mean of n

ii crV =  where c is a constant. Moreover, let a constant K 

exists such that 
ii Kp ∆=∆ )( . Then for the probability density 

iViKip /)( ′=  of the 

points in the neighborhood of point x it holds that )()()( ipDpp ii ==∆ , where 

i
i D

iK
Dp =)( .  

Proof: The p(i) is probability density and at the same time, due to Assumption 1 

iD1 it is proportional to p(i). Then there is a constant K that )()( ipDp i = . Under 

Assumption 1 there is Di =∆  and then )()()( ipDpp ii ==∆ . �  

Results - testing the classification ability 
The classification algorithm was written in c++ as SFSloc7 program and tested using 
tasks from UCI Machine Learning Repository [7]. In Table 1 the results are shown 
together with results of other methods as given in [7].  
 
Table 1. (see the next page) Comparison of the classification error of SFSloc7 for 
different tasks with results for other classifiers as given by [7].  Notes to Table 1: 
1. for threshold 0.413 
2. numeric data 
3. for threshold 0.24 
4. for threshold 0.868482 
5. Unknown why (bounds WERE 

increased) 

6. parameter settings: 70% and 80% for 
acceptance and dropping respectively 

7. (Aha & Kibler, IJCAI-1989) 
8. an average of over .. 
9. for threshold 0.550254 
10. no windowing 
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“ German”    “ Hear t”    
Algorithm Error Note Algorithm Error Note 
SFSloc7    0.520 1; 2 SFSLoc7        0.357 3 
Discrim 0.535  Bayes  0.374  
LogDisc 0.538  Discrim  0.393  
Castle 0.583  LogDisc  0.396  
Alloc80 0.584  Alloc80 0.407  
Dipol92 0.599  QuaDisc  0.422  
Smart 0.601  Castle  0.441  
Cal 0.603  Cal5  0.444  
Cart 0.613  Cart  0.452  
QuaDisc 0.619  Cascade  0.467  
KNN 0.694  KNN  0.478  
Default 0.700  Smart  0.478  
Bayes 0.703  Dipol92 0.507  
IndCart 0.761  Itrule 0.515  
BackProp 0.772  BayTree 0.526  
BayTree 0.778  Default 0.560  
Cn2 0.856  BackProp  0.574  
Ac2 0.878  LVQ 0.600  
Itrule 0.879  IndCart  0.630  
NewId 0.925  Kohonen 0.693  
LVQ 0.963  Ac2  0.744  
Radial 0.971  Cn2  0.767  
C4.5 0.985  Radial  0.781  
Kohonen 1.160  C4.5  0.781  
Cascade 100.0  NewId  0.844  
      
“ Adult”    “ Ionosphere”    
Algorithm Error Note Algorithm Error Note 
FSS Naive Bayes 0.1405  IB3   0.0330 6; 7 
NBTree  0.1410  backprop  0.0400 8 
C4.5-auto    0.1446  SFSloc7 0.0596 9 
IDTM Dec. table 0.1446  Ross Quinlan's C4 0.0600 10 
HOODG  0.1482  nearest neighbor  0.0790  
C4.5 rules 0.1494  "non-linear" perceptr. 0.0800  
OC1 0.1504  "linear" perceptron  0.0930  
C4.5                     0.1554     
Voted ID3 (0.6)  0.1564     
CN2  0.1600     
Naive-Bayes 0.1612     
Voted ID3 (0.8)  0.1647     
T2   0.1684     
SFSloc7         0.1786 4    
1R   0.1954     
Nearest-neighbor  1 0.2035        
Nearest-neighbor  2 0.2142     
Pebls Crashed 5    
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Conclusions 
In this paper we dealt with simplified representation of probability distribution of 
points in multidimensional Euclidean space including boundary effects. A new 
method for classification based on the notion of distribution mapping exponent and its 
local estimate was developed. It was found that the higher the dimensionality, the 
better.  
The method has no tuning parameters and there is no true learning phase. In the 
” learning phase“ only standardization constants are computed and thus this phase is 
several orders of magnitude faster than the learning phase of neural networks or many 
other methods [2], [7], [8].  
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