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Abstract – In this paper, we empirically examine the use of a range of Minkowski 
norms for the clustering of real world data.  We also investigate whether 
normalisation of the data prior to clustering affects the quality of the result.  In a 
nearest neighbour search on raw real world data sets, fractional norms outperform 
the Euclidean and higher-order norms.  However, when the data are normalised, the 
results of the nearest neighbour search with the fractional norms are very similar to 
the results obtained with the Euclidean norm.  We show with the classic statistical 
technique, K-means clustering, and with the Neural Gas artificial neural network 
that on raw real world data the use of a fractional norm does not improve the 
recovery of cluster structure.  However, the normalisation of the data results in 
improved recovery accuracy and minimises the effect of the differing norms. 
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1.0 Introduction 
 
The measurement of similarity or distance is fundamental in the cluster analysis 
process as most clustering techniques begin with the calculation of a matrix of 
distances (or dissimilarities).  The use of non-Euclidean norms within the clustering 
framework has been the topic of recent research [1-3].  Previous results in [1] have 
shown that in the context of K-means partitioning on synthetic data and nearest 
neighbour search on real data, that fractional norms do give better results.  We have 
extended this investigation in 2 ways: i) to see if normalisation of the data affects the 
results, and ii) to see if K-means and a good neural network classifier can repeat these 
results on real data sets (with and without normalisation). 
 
 
2.0 The Minkowski Metric 
 
A family of distance measures are the Minkowski metrics, where the distance 
between the d-dimensional entities i and j (denoted by Mij) is given by: 
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where xik is the value of the kth variable for the ith entity, and xjk is the value of the kth 
variable for the jth entity. 
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The most familiar and common 
measure of distance is the Euclidean 
or L2 norm - a special case of the 
Minkowski metric, where r = 2.  
Human understanding and experience 
makes us familiar with the results 
when applying L2 measurements (to a 
problem space on a Euclidean plane), 
but the application of non-L2 norms 
can lead to some counter-intuitive 
results.  Fig. 1 shows unit length loci 
around the origin, plotted with a 
selection of Lr norms.  The L2 norm 
traces a circle, the fractional (r < 1) 
norms trace a hypoellipse, the L1 
norm traces a straight line and the 
higher order norms (r > 2) produce 
hyperelliptical traces. 
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Fig 1. Unit length loci plotted with various 
Lr norms, from [1]. 

 
In a clustering context when measuring dissimilarities between two entities, the use of 
a fractional norm reduces the impact of extreme individual attribute differences when 
compared to the equivalent Euclidean measurements.  Conversely, the Lr norms 
(where r > 1) emphasise the larger attribute dissimilarities between the two entities, 
and taken to the limit, L∞ reports the distance based on the single attribute with the 
maximum dissimilarity. 
 
 
3.0 Fractional Lr norms and Data Normalisation 
 
The clustering process aims to identify natural groupings within a data set.  The 
notion of proximity is key in the identification of these natural groups, and the 
assumption is made that two entities that are in close proximity are likely to be 
members of the same group, or class. 
 
3.1 Nearest Neighbour Search 
 
Nearest neighbour (NN) search identifies entities in close proximity.  The nearest 
neighbour problem is defined in [4] as: Given a collection of data points and a query 
point in a d-dimensional metric space, find the data point that is closest to the query 
point. 
 
We repeated the empirical test of NN search using both fractional and higher-order Lr 
norms in [1] with the Ionosphere, Wisconsin Diagnostic Breast Cancer (WDBC), and 
Image Segmentation labelled data sets from the UCI Machine Learning Repository 
[5].  We report only a single representative result set.  Table I shows the results of the 
nearest neighbour search on the raw Image Segmentation data set, and we confirmed 
that for this, and the two other data sets considered, the fractional norms generally 
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identified more nearest neighbours of the same class as the query point than the 
higher order norms. 

 
The effect of 7 data standardisation methods on the recovery of class structure with a 
variety of perturbed data was examined in [6].  The results showed that normalization 
of each attribute for each datum, by the division of the range of each attribute, was 
beneficial to the cluster recovery accuracy for the synthetic data sources considered.  
The overall conclusion in [6] was the recovery of the underlying cluster structure 
improved when the data were normalised with either 

Table I 
Image Segmentation Training Data - Raw 
210 Instances of 19 attributes plus the class label (7 classes) 
n L0.1 L0.5 L1 L2 L4 L10 L∞ 
3 518 539 494 450 446 426 437 
5 818 874 772 692 720 651 678 
9 1345 1424 1249 1184 1167 1029 1066 

For this experiment, the data were subjected to a NN search with no 
preprocessing.  The larger the number of neighbours found belonging to the 
same class as the query point (when considering the nearest n neighbours), the 
better the performance of the NN search.  In general, the fractional Lr norms 
identify more neighbours of the same class as the query point than the higher-
order Lr norms. 

x' = (x-Xmin)/(Xmax – Xmin)      (2) 
or 

x' = x/(Xmax – Xmin),       (3) 
where x is the attribute value to be normalised, Xmax is the maximum value of attribute 
x, and Xmin is the minimum value of attribute x. 

We repeated the nearest neighbour search with the Image Segmentation data 
normalised to the range [0,1] with (2).  Table II details the results of the nearest 
neighbour search and shows that, for this normalised data set, the fractional norms 
generally identified more nearest neighbours of the same class as the query point than 
the higher-order norms. 

 

Table II 
Image Segmentation Training Data - Normalised 
210 Instances of 19 attributes plus the class label (7 classes) 
n L0.1 L0.5 L1 L2 L4 L10 L∞ 
3 506 536 507 515 502 493 464 
5 819 872 821 821 809 799 736 
9 1371 1489 1404 1364 1400 1362 1244 
For this experiment, the data were normalised to the range [0,1] with (2) prior 
to the NN search.  The larger the number of neighbours found belonging to 
the same class as the query point (for the n neighbours considered), the better 
the performance of the NN search.  In general, the fractional Lr norms identify 
more neighbours of the same class as the query point than the higher-order Lr 
norms. 
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However, the differentiation between the various norms (for a given n) is not as 
dramatic as the results obtained with the raw data shown in Table I.  Although not 
shown here, it is interesting to note that the normalisation of the WDBC data set 
resulted in the L2 norm identifying more nearest neighbours of the same class as the 
query point than the fractional norms considered. 
 
The nearest neighbour search results show the lower-order norms outperforming the 
higher-order norms, and from this point forwards we concentrate our investigation 
principally on fractional norms. 
 
3.2 K-means Class Recovery Accuracy 
 
The improvement in the performance of K-means partitioning using a fractional 
distance norm was demonstrated in [1] on synthetic data.  We extended this to see if 
this finding carried over to real world data sets.  We empirically examined the effect 
of fractional norms on the performance of the K-means class recovery accuracy with a 
selection of data sets from [5], and report on a representative example (the Image 
Segmentation data set).  We performed K-means partitioning with the number of 
codebook vectors equal to the number of classes in the data set, and the codebook 
vectors initialised with the attribute values of a datum drawn at random from the data 
set.  We used either L2 or L0.3 as the distance measure for the duration of the K-means 
process.  Once the codebook vectors were stabilised, the data were classified 
(allocated to the nearest codebook vector) with the L2 and L0.3 norms.  We were 
looking for a correlation in the recovery between the training norm and the 
classification norm.  No correlation was identified, but we include the results for 
interest. 
 

Using labelled data allowed us to assess the class recovery accuracy with confusion 
matrices, using a count of the number of members from class c represented by the 
exemplar codebook vector for class c.  The accuracy results are expressed as a 
percentage of the ideal partitioning scheme.  For each set of parameters, we ran the K-

Table III 
  Raw Normalised 
Training 
norm 

Classification 
norm 

Class 
Recovery 

Likely 
Range 

Class 
Recovery 

Likely 
Range 

L2 L2 59.2% ±0.7% 63.0% ±2.3% 
L2 L0.3 58.4% ±0.8% 62.0% ±1.7% 
L0.3 L2 54.5% ±3.6% 63.3% ±0.6% 
L0.3 L0.3 54.2% ±3.4% 62.5% ±0.3% 
K-means Class Recovery Accuracy for the Image Segmentation data set.  
Column 1 details the norm used to perform the K-means distance 
measurement.  Column 2 details the norm used to classify the data to the 
nearest codebook vector when the K-means partitioning reached a 
quiescent state.  The results suggest that normalisation of the data both 
improves class recovery accuracy and reduces the effects of the norm r-
value. 
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means partitioning 10 times, and show the precision of our estimates of class accuracy 
as 95% confidence limits.  Table III shows the recovered class accuracy using the raw 
and normalised Image Segmentation data set.  The most obvious result is the overall 
class recovery accuracy improved for all Lr norms when the data were normalised to 
the range [0,1].  Additionally, the normalisation of the data minimised the variation in 
class recovery obtained with the differing norms.  In contrast to the results obtained 
with the synthetic data in [1], there was no improvement in the K-means class 
recovery accuracy obtained with the fractional norm when compared to the results 
obtained with the L2 norm.  The trends were similar in the other UCI data sets 
considered. 
 
3.3 Neural Gas Class Recovery Accuracy 
 
We examined the influence of the norm r-value on the performance of the Neural Gas 
algorithm [7] when clustering a selection of real world data sets. 
 
Table IV shows the recovered class accuracy for the raw and normalised data sets.  
The results shown for the raw data are the optimum result set for a range of adaptation 
steps and temporal decay functions.  When repeating the experiment with the data 
normalised to the range [0,1], the number of adaptation steps and temporal decay 
functions remained at these optimum settings.  The results generally showed a marked 
improvement in the class accuracy recovery between the normalised and raw data.  
However, there was little, if any, significance in the class accuracy recovery between 
the Lr norms considered. 

 

Table IV 
   Raw Normalised 
 Training 

norm 
Classification 
norm 

Class 
Recovery 

Likely 
Range 

Class 
Recovery 

Likely 
Range 

Image L2 L2 47.2% ±1.9% 61.4% ±3.4% 
Segmentation L2 L0.3 46.0% ±0.1% 60.3% ±3.4% 
 L0.3 L2 48.4% ±6.2% 57.5% ±4.2% 
 L0.3 L0.3 52.1% ±2.6% 62.3% ±0.2% 
WDBC L2 L2 72.9% ±8.1% 92.7% ±0.3% 
Breast L2 L0.3 85.4% ±7.4% 91.1% ±0.2% 
Cancer L0.3 L2 82.0% ±8.9% 87.8% ±7.0% 
 L0.3 L0.3 84.9% ±7.3% 89.2% ±1.2% 
Wine L2 L2 70.4% ±0.2% 95.3% ±0.4% 
 L2 L0.3 77.0% ±1.0% 93.7% ±0.3% 
 L0.3 L2 66.5% ±0.4% 95.4% ±1.3% 
 L0.3 L0.3 69.8% ±0.3% 93.0% ±0.4% 
Neural Gas Class Recovery Accuracy for a selection of UCI data sets.  Column 1 lists the 
norm used to perform the Neural Gas distance measurements.  Column 2 lists the norm used 
to classify the data to the nearest codebook vector.  Again, the results suggest that 
normalisation of the data both improves class recovery accuracy and reduces the influence of 
norm r-value. 
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4.0 Conclusions 
 
In this paper, we demonstrated the important effect normalisation of the data has on 
the performance of nearest neighbour search, K-means, and Neural Gas clustering.  
Using the Neural Gas clustering algorithm, there was a significant and substantial 
improvement in the class recovery accuracy obtained by normalising the data. 
 
In contrast to the results obtained with the synthetic data in [1], the K-means class 
recovery accuracy on real world data obtained with the fractional norm was not an 
improvement over the results obtained with the L2 norm.  The trends were similar in 
the other real world UCI data sets considered. 
 
With nearest neighbour search, it is the case that the fractional norms, in general, do 
identify more neighbours of the same class as the query point with raw data as 
claimed in [1].  However, the results are not as convincing when the data are 
normalised, and we identified one data set for which normalisation resulted in the 
nearest neighbour search with the L2 norm outperforming a nearest neighbour search 
with fractional norms. 
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