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Abstract. In the context of nonlinear regression, we consider the prob-
lem of explaining a variable y from a vector x of explanatory variables
and from a vector t of conditionning variables, that influences the link
function between y and x. A neural based solution is proposed in the
form of a field of nonlinear regression models, by which it is meant that
the relation between those variables is modeled by a map from some space
to a function space. This approach results in a broader class of neural
models than that of perceptrons, which therefore inherits the interesting
approximation theoretical properties of the latter. The interest of such
a modeling is illustrated by a real-world geophysical application, namely
ocean color remote sensing.

1 Introduction

Statistical models, such as linear and, more generally, nonlinear regression mod-
els, aim at explaining an exogenous variable y from several explanatory, or
endogenous, variables x1,...,x,. Neural networks such as multilayer percep-
trons and radial basis functions networks, falling in the class of so-called ridge
constructions, achieve this goal with several well-known interesting proper-
ties. Let us just mention the density property, aka universal approximation
property[3][5], and the results related to the approximation rate (the dimen-
sion independent upper bound[1][2], and the asymptotic expression obtained
by Maiorov[6] for instance).

In this vein, we focus on a slightly different regression problem, for which
we propose a neural based solution inheriting the interesting mathematical
properties mentioned above. This problem still consists in explaining y from
T1,..., Tn, but with the difference that, in fact, only some of the z;, say =1, ..., x4
(d < n), convey information about y, while the remaining variables act as
parameters, or conditionning variables, in the sense that they influence the
link function between y and the real informative variables x1, ..., x4.
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Typical examples of this kind of problem are to be found in the field of
geosciences, where the observed data may depend on several angular variables
that define the geometry of the observation process. Let us briefly describe
the ocean color remote sensing problem. It consists in estimating the concen-
trations of several oceanic constituants, such as phytoplankton chlorophyllous
pigments, from radiometric measurements from space 1, ..., x4. In fact, those
radiometric measurements depend continuously on angular variables that are
used to characterize the positions of the observing satellite and of the sun
relatively to the target point on the Earth’ surface. Hence those angular vari-
ables, which obviously do not carry any information about the phytoplankton
concentration, have to be taken into account, for the link function between
the phytoplankton concentration and the measurements x1, ..., x4 depends on
them. A much more academic example is the case of the reconstruction of
continuously parametrized hypersurfaces from scattered noisy data.

For this kind of problem, it seems natural to separate the variables being
effectively informative with respect to y, from the conditioning variables. We
shall denote by x the d-dimensional vector of informative variables, and by
t the p-dimensional vector of conditionning variables. The proposed solution
consists in attaching to t a nonlinear regression model explaining y from x,
and where we demand that the attachment vary smoothly in t. This approach
yield a field of nonlinear regression models over the set of permitted values for
t. As will be explained further, it also conduces to a broader class of neural
models that, consequently, inherits their approximation theoretical properties.

The paper is organized as follows. In the next section, the problem of in-
terest is stated more formally, and fields of nonlinear regression models are
defined. In section 3, stochastic learning algorithms are presented for the con-
struction of such a model from scattered data. In section 4 are presented results
obtained by applying this methodology to the ocean color problem. Finally,
concluding remarks are given.

2 Function fields and nonlinear regression mod-
els fields

Let x be a vector of explanatory variables, let t be a vector of conditionning
variables, and let y be the real variable to be explained. Let X and T be
the sets of permitted values for x and t, respectively. We consider statistical
models of the following form:

y=fe(x)+e (1)

where for each t € T, f; is an element of a subset M of C(X), the set of
continuous real valued functions on X, and € is a random variable of null mean
and finite variance o2 that is not correlated with x. Hence in this model, x
carries information about y, while t does not, but the link function between y
and x depends on t. The definition of the set M will be stated later.
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To study the dependence of f; on t, we introduce the notion of a function
field over T. We shall assume that X is locally compact and Hausdorff, and
that T is compact, metric and Hausdorff. We define a function field over T
as being a map T — C(X). The set of all continuous function fields over T
will be denoted by (C(X))”. The natural topology on (C(X))” is the compact-
open topology, which is equivalent to the topology of uniform convergence on
compact sets, under the above assumptions on the sets X and T'. Furthermore,
there is the homeomorphism C(X x T) 5 (C(X))”. Hence we introduce the
following notation. For each ¢ € (C(X))”, we define the map ¢, : X x T — R
by letting (. (x,t) = ((t)(x). Similarly, the set of all M-valued continuous
function fields over T will be denoted by MT.

Returning to the initial problem, Eq. (1) may be rewritten equivalently as

y=C(t)(x)+e (2)

or as
Y =Gu(xt) +e (3)

where ¢ belongs to MT. Hence Eq. (2) defines a field of regression models over
T. One may show that if M is dense in C(X) and if T is as above, then MT
. . T
is dense in (C(X))" .

Herein, we shall be interested in the case where the model set M is the set of
one-hidden layer perceptrons or, more generally, the set spanned by functions
of the ridge form. Hence we consider the set M = U,,M,, where

Mn B {Z cih(aix + bl), bi, Cc; € R, a; € Rd} (4)
i=1

We address now the construction of fields of nonlinear regression models, a topic
closely related to their parametrization. Let ¢ € MT. Since T is compact, we
may assume, without loss of generality, that ¢ belongs to ML, for some integer
n. Each element of M,, depends on parameters ¢;,a;, b;, for i = 1,...,n, that
we shall summarize by a vector 6,,. Let ©,, be the set of allowable values for
O, e, ©, =[[I, R x R¢ x R, and let 4, : ©, — M, be the continuous
map carrying a parameter vector 6,, to the corresponding model of M,,. We
intend to build a continuous function field ¢ € MZ through a parameter map
¢ : T — O, such that ¢ = 7,,0£. Let us mention the following difficulties, arising
because the map 4, is only a continuous surjection. First for each ¢ € MY,
there might not exist a continuous map £ : T — O, such that { = i, o &.
Secondly, if we proceed conversely by building ¢ according to ¢ = i, o £, where
¢ is continuous, we are not sure to get all of ML when ¢ is allowed to vary in all
of C(T,©,,). However one may show first, that the set of continuous function
fields ¢ € M7 such that

n

Cxt) = Y i)k (ai(t)x + bi(t) (5)

i=1
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for some integer n, ¢; € C(T), a; € C(T,R%) and b; € C(T) is dense in (C(X))”,
and secondly, that for producing in this way a dense set of continuous function
fields, it is sufficient that the ¢; and a; lie in subsets of C(T) and C(T,R%),
respectively, containing the constant functions, and that the b; lie in some
subset of C(T') containing the affine functions. This results, roughly speaking,
from the density in C(X x T') of perceptrons set on X x T'. Clearly we see that
we obtain a broader class of models which, therefore, inherits by construction
the interesting approximation theoretical properties of those networks.

3 Algorithms

Let D be a data set of N samples (x;,t;,y;). Based on D, we are willing to
represent the link between y, x and t through a field of nonlinear regression
models of the following form

y=C(t)(x) +e (6)

where ¢ € ML and where M,, is as in (4). In light of the results stated in
the previous section, we present below two methods for constructing ¢ via a
parameter map & : T — ©,,. In both of them, we assume ¢ ~ N(0,02) and
use the averaged sum of the squared errors £ = % Zf\;(yl — C(t5)(x4))? as
the natural criterion to be minimized. The main difference with traditional
perceptrons is that here, the parameters for { are maps T — ©,,.

The first method consists in taking a parametrized subset F, of C(T, ©,,),
that contains the constant and affine functions of t (for the reason previously
mentioned), where p is the parameter vector. Hence the problem reduces to the
one of minimizing £ with respect to p, which may be achieved, for instance,
by means of a stochastic gradient descent algorithm or simulated annealing.
However this method may suffer from an inappropriate choice of F,, which
may yield a much more larger n than necessary. The second method described
below allows one to cope with this issue.

This second method consists in building a sample of a continuous map
¢: T — 0O, such that the induced field ¢ := i, 0 £ minimizes £. We proceed as
follows. Assume T is a compact subset of RP. Let tT,...t5 be K points of R?,
being the vertices of a regular grid of RP, such that T is included in the smallest
p-dimensional cube = containing all of the t%. Note that K is the product of
p integers k; > 2. Hence T' C Z, and tf ec=Zforal k=1,...,K. Let v, ..., vk
be K real numbers and consider those continuous and piecewise-differentiable
maps g € C(E) such that g(t) = v for all k = 1,..., K, and defined for all
t € = such that t # tFVk by:

g(t) = Z a;i(t)g(tF,) (7)

In this equation, the ti are the 2P immediate neighbours of t on the grid, i.e.,
they are the vertices of a p-cube containing t, and the coefficients «;(t) are the
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coefficients of the standard p-dimensional interpolation procedure on a p-cube.
We shall denote by Fi the set of all such maps. Next consider those function
fields ¢ over T being the restrictions to T' of function fields ¢ over = which
satisfy to

Colx,t) =) cilt)h (ai(t)x + bi(t)) (8)
i=1
where the b;, the ¢; and the components of the a; belong to Fx. Hence such a
function field is parametrized by n(d + 2) K real numbers 7], where 1 < i < K
and 1 < j < n(d+ 2), since dim(0,,) = n(d + 2). The minimization of £ with
respect to them may be performed as follows. First, pick randomly a sample
(x4,t;,¥;) from D and compute the error e; of the model for that sample. Next,
if t; fall on one of the vertices of the grid, say on ti, then modify the ,‘Yii for

j=1,...n(d+ 2) by the amount — i, where 1 > 0 is the learning rate.

Otherwise, t; is different from all the Vértices. Let tfl be the 2P immediate
neighbours of t; on the grid (I = 1,...,2P). Then modify all the 'yi by the

amounts —77

By J L e;, respectively, the expanded expressions of which may be

easily derived. Flnally, those steps are repeated until convergence. By this
method, we obtain from the sets D; = {(tr,7]);k = 1,..., K} a sample of a
map £ inducing the function field { = i, o £&. Its advantages with respect to
the first method are i) that the grid may be refined during the execution of the
learning algorithm, and ii) that the resulting sample may be used in a second
time to choose an appropriate model set for £ offering, for example, a higher
degree of regularity.

By analogy with the case of nonlinear regression with multilayer perceptron
when the number N of samples tends towards infinity, the resulting field ¢ of
nonlinear regression models is expected to be a good approximation to the field
Ey[y|x] over T of the (t dependent) conditional means of y given x.

4 Application to ocean color remote sensing

For this problem, the vector t consists of three angular variables, the vector x is
composed of reflectances at wavelengths located in the visible and near-infrared
(typically a number of 8), and the variable y is the near surface chlorophyll-a
concentration ([Chl-a]), physically related to the phytoplankton concentration.
A statistically significant data set of about 62,000 samples, encompassing all
the sources of variability (mostly due to the atmosphere) has been generated
via intensive use of simulation (multiple runs of a radiative transfer code),
and has been randomly split into data sets DO and DY, used for learning and
validation, respectively. Two fields F' and F v of nonlinear regression models
have been built according to the second method, on a 2x2x3 regular grid, where
the nonlinear regression models attached to t are one-hidden layer perpceptrons
with 10 neurons. They have been trained both on DY, but in the case of F",
some amount of realistic noise has been added to the data during the execution
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of the stochastic learning algorithm. As shown in Table 1, the resulting error
in the chlorophyll-a concentration estimation is at the order of 4.2% over the
range 0.3 — 30mg/m3, in the case of non-noisy data, and 10% in the case
of realistic noisy data, which illustrates the efficiency and the robustness of
this modelling. These results represent a significant improvement, since actual
processing techniques[4] yield theoretical errors that may reach over 20% in the
absence of noise, and larger values in the presence of noise.

F FY Tab 1. This table gives the mean relative error in
DY 0.042 0.068 [Chl-a] estimation evaluated on data sets DY, DY,
DY 0.042 0.070 D}, DY, for models F (trained on non noisy data)
Df 0.151 0.104 and F” (trained on noisy data), where D; and D
’D}} 0.151 0.105 are realistic noisy versions of DY, DY, respectively.

5 Concluding Remarks

Fields of nonlinear regression models allows one to deal with composite data,
where some variables are effectively explanatory, while the others are condi-
tionning, and without having recurse to the product space X x T, which in
some cases, such as the ocean color remote sensing problem, may be meaning-
less. The methodology developped in this work is rather general, and one could
take for M,, any arbitrary set of models, such as a set being homeomorphic to
some subset of a finite dimensional euclidean space, which would facilitate the
construction of those fields. However of particular interest is the case where
those models are taken as neural networks, since as shown above, they inherit
the interesting approximation theoretical properties of neural networks.
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