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Abstract. In this paper we propose an Rprop modification that builds
on a mathematical framework for the convergence analysis to equip Rprop
with a learning rates adaptation strategy that ensures the search direction
is a descent one. Our analysis is supported by experiments illustrating
how the new learning rates adaptation strategy works in the test cases to
ameliorate the convergence behaviour of the Rprop. Empirical results in-
dicate that the new modification provides benefits when compared against
the Rprop and a modification proposed recently, the Improved Rprop.
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1 Introduction

The Resilient Propagation (Rprop) algorithm is one of the most popular adaptive
learning rates training algorithms [9]. It employs a sign-based scheme to elimi-
nate harmful influences of derivatives’ magnitude on the weight updates, and is
eminently suitable for applications where the gradient is numerically estimated
or the error is noisy [2]; it is easy to implement in hardware and is not susceptible
to numerical problems [5]. The ideas behind Rprop have motivated the develop-
ment of several variants with the aim to improve the convergence behavior and
effectiveness of the original method. Thus hybrid learning schemes have been
proposed to incorporate second derivative related information in Rprop, such
as the QRprop, which approximates the second derivative by one–dimensional
secant steps, and the Diagonal Estimation Rprop–DERprop [7], which directly
computes the diagonal elements of the Hessian matrix. Also approaches inspired
from global optimisation theory have been developed to equip Rprop with an-
nealing strategies, such as the Simulated Annealing Rprop–SARprop and the
Restart mode Simulated Annealing Rprop–ReSARprop [11] in order to escape
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from shallow local minima. Recently, the Improved Rprop–IRprop algorithm [2],
which applies a backtracking strategy (i.e. it decides whether to take back a step
along a weight direction or not by means of a heuristic), has shown improved con-
vergence speed when compared against existing Rprop variants, as well as other
training methods. Relevant literature shows that Rprop-based learning schemes
exhibit fast convergence in empirical evaluations, but usually require introduc-
ing or even fine tuning additional heuristics. For example, annealing schedules
require heuristics for the acceptance probability and the visiting distribution,
whilst second derivative methods employ heuristics in the various approxima-
tions of the second derivative. Moreover, literature shows a lack of theoretical
results underpinning the Rprop modifications, particularly the first–order meth-
ods. This is not surprising as heuristics make difficult to guarantee converge
to a local minimiser of the error function when adaptive learning rates for each
weight are used in calculating the weight updates [2, 3, 6, 9]. This paper proposes
a new Rprop-based learning scheme and presents a theoretical justification for
its development. In the next section, the new algorithm and the corresponding
theoretical result are presented. Then results on the experimental evaluation of
the algorithm as well as comparisons with the original Rprop and the recently
proposed IRprop are reported. The paper ends with concluding remarks.

2 A Modification of the Rprop

In our approach Rprop’s convergence to a local minimiser is treated with princi-
ples from unconstrained minimisation theory. Suppose that (i) f : D ⊂ R

n → R

is the function to be minimized and f is bounded below in R
n; (ii) f is continu-

ously differentiable in a neighborhood N of the level set L = {x : f(x) 6 f(x0)},
and (iii) ∇f is Lipschitz continuous on R

n that is for any two points x and y ∈
R

n, ∇f satisfies the Lipschitz condition ‖∇f(x)−∇f(y)‖ 6 L‖x−y‖, ∀x, y,∈
N where L > 0 denotes the Lipschitz constant, and x0 is the starting point of
the following iterative scheme

xk+1 = xk + τkdk. (1)

Convergence of the general iterative scheme (1), in which dk is the search direc-
tion and τk > 0 is a step–length, requires that the adopted search direction dk

satisfies the condition g(xk)
⊤

dk < 0, which guarantees that dk is a descent direc-
tion of f(x) at xk. The step–length in (1) can be defined by means of a number
of rules, such as the Armijo’s rule [1], the Goldstein’s rule [1], or the Wolfe’s
rule [13, 14], and guarantees the convergence in certain cases. For example,
when the step–length is obtained through Wolfe’s rule [13, 14]

f(xk + τkdk) − f(xk) 6 σ1τ
kg(xk)⊤dk, (2)

g(xk + τkdk)⊤dk
> σ2g(xk)⊤dk, (3)

where 0 < σ1 < σ2 < 1, and g is the gradient, then a theorem by Wolfe [13, 14]
is used to obtain convergence results. Moreover, the Wolfe’s Theorem [1, 4]
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suggests that if the cosine of the angle between the search direction dk and
−g(xk) is positive then limk→∞ g(xk) = 0, which means that the sequence of
gradients converges to zero. For an iterative scheme (1), limk→∞ g(xk) = 0 is
the best type of global convergence result that can be obtained (see [4] for a
detailed discussion). Evidently, no guarantee is provided that (1) will converge
to a global minimiser, x∗, but only that it possesses the global convergence
property, [1, 4], to a local minimiser, i.e. “is designed to converge to a local

minimizer of a nonlinear function, from almost any starting point” [1, p.5].
In batch training, E is bounded from below, since E(w) > 0. For a given

training set and network architecture, if w∗ exists such that E(w∗) = 0, then w∗

is a global minimiser; otherwise, w with the smallest E(w) value is considered a
global minimiser. Also, when using smooth enough activations (the derivatives of
at least order p are available and continuous), such as the well known hyperbolic
tangent, the logistic activation function etc., the error E is also smooth enough.

Theorem. Suppose that (i)-(iii) are fulfilled. Then, for any w0 ∈ R
n and any

sequence {wk}∞k=0 generated by the Rprop’s scheme

wk+1 = wk − τk diag{ηk
1 , . . . , ηk

i , . . . , ηk
n} sign

(

g(wk)
)

, (4)

where sign
(

g(wk)
)

denotes the column vector of the signs of the components

of g(wk), τk > 0, ηk
m, m = 1, 2, . . . , i − 1, i + 1, . . . , n are small positive real

numbers generated by the Rprop learning rates’ schedule:

if
(

gm(wk−1) · gm(wk) > 0
)

then ηk
m = min

(

ηk−1
m · η+,∆max

)

(5)

if
(

gm(wk−1) · gm(wk) < 0
)

then ηk
m = max

(

ηk−1
m · η−,∆min

)

(6)

if
(

gm(wk−1) · gm(wk) = 0
)

then ηk
m = ηk−1

m , (7)

where 0 < η− < 1 < η+, ∆max is the learning rate upper bound, ∆min is the
learning rate lower bound, and

ηk
i = −

∑n
j=1

j 6=i
ηk

j gj(w
k) + δ

gi(wk)
, 0 < δ ≪ ∞, gi(w

k) 6= 0, (8)

holds that limk→∞ ∇E(wk) = 0.
Proof: Evidently, E is bounded below on R

n. The sequence {wk}∞k=0 generated
by the iterative scheme (4) follows the direction

dk = −diag{ηk
1 , . . . , ηk

i , . . . , ηk
n} sign

(

g(wk)
)

,

which is a descent direction if ηk
m, m = 1, 2, . . . , i − 1, i + 1, . . . , n are positive

real numbers derived from Relations (5-7), and ηk
i is given by Relation (8), since

g(wk)⊤dk < 0. Following the proof of [12, Theorem 6], since dk is a descent di-
rection and E is continuously differentiable and bounded below along the radius
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{wk +τdk | τ > 0}, then there always exist τk satisfying (2)–(3) [1, 4]. Moreover,
the Wolfe’s Theorem [1, 4] suggests that if the cosine of the angle between the
descent direction dk and the −g(wk) is positive then limk→∞ g(wk) = 0. In our

case, indeed cos θk = −g(wk)⊤dk

‖g(wk)‖ ‖dk‖
> 0. �

The modified Rprop, named GRprop, is implemented through Relations (4)-
(8). The role of δ is to alleviate problems with limited precision that may occur
in simulations, and should take a small value proportional to the square root of
the relative machine precision. In our tests we set δ = 10−6 in an attempt to
test the convergence accuracy of the proposed strategy. Also τk = 1 for all k

allows the minimisation step along the resultant search direction to be explicitly
defined by the values of the local learning rates. The length of the minimisation
step can be regulated through τk tuning to satisfy (2)–(3). Checking (3) at
each iteration requires additional gradient evaluations; thus, in practice (3) can
be enforced simply by placing the lower bound on the acceptable values of the
learning rates [3, p.1772], i.e. ∆min.

3 Empirical Study

A simple problem is used first to visualise the behavior of the GRprop and
compare it with the original method. It is a single node with two weights and
logistic activation function. Figure 1 (top row) shows that under the same initial
weights and heuristic values, [9], GRprop locates at the center of the contour plot
the feasible minimum successfully (Figure 1, left), while Rprop oscillates around
the neighbourhood of the minimiser (Figure 1, right). Figure 1 (second row)
shows how GRprop locates the minimiser successfully, whilst Rprop’s trajectory
leads to a point with error value higher than the minimiser.

Below, we report results from 100 independent trials for two problem from
the UCI Repository of Machine Learning Databases of the University of Califor-
nia. These 100 random weight initializations are the same for all the learn-
ing algorithms, and the training and testing sets were created according to
PROBEN1 [8]. The statistical significance of the results has been analysed
using the Wilcoxon test [10]. All statements refer to a significance level of 0.05.
In all cases we have used networks with sigmoid hidden and output nodes.

The first benchmark is known as the genes problem. The data set consists
of 1588 patterns. We have used a 120-4-2-3 nodes network as suggested in
PROBEN1. Table 1 shows the average performance in terms of: learning speed
(Time, secs), convergence success out of the 100 runs (Conv., percentage), and
generalisation (Gen., percentage of correctly classified test patterns); a “+” in-
dicates statistical significance of the GRprop results over another method). For
example, GRprop-trained networks always generalise slightly better than other
networks. Figure 2 (leftside), shows how GRprop converges to a feasible solution
(E < 10−5), while Rprop to a minimiser with higher error value.

The second task is to decide whether the patient’s thyroid has over function,
normal function, or under function. We use the thyroid1 dataset (3600 patterns),
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Figure 1: Weight trajectories of GRprop (left) and Rprop (right).

Table 1: Average algorithm performance in the genes and thyroid problems
Genes Thyroid

Algorithm Time Gen. Conv. Time Gen. Conv.
Rprop 41.82 (+) 99.1 (+) 97 19.89 (+) 98.12 (+) 87
IRprop 41.04 (+) 99.1 (+) 97 19.58 (+) 98.12 (+) 87
GRprop 36.80 100 100 11.80 98.23 100

and a network with 21-4-3 nodes, as suggested in [11]. Results are given in Ta-
ble 1. GRprop outperforms the other algorithms particularly in learning speed.
Figure 2 (rightside) illustrates a case where GRprop converges to a minimiser
with E < 10−5 while Rprop gets stuck to a minimiser with higher error value.
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Figure 2: GRprop and Rprop learning curves: genes (left) and thyroid (right).
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4 Concluding remarks

In this paper we introduced GRprop, which constitutes and efficient improve-
ment of the original Rprop built on a theoretical basis. We reported comparative
results in two benchmark problems. Additional tests have been performed on
other UCI benchmarks (e.g. cancer, ecoli and yeast). In our tests GRprop
exhibited better convergence speed and stability than Rprop and IRprop.
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