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Abstract. This work is designed to contribute to a deeper understanding of the
recently proposed Merging SOM (MSOM). Its context model aims at the repre-
sentation of sequences, an important subclass of structured data [7]. In this work,
we revisit the model with a focus on its fractal context encoding and the conver-
gence of its recursive dynamic. Experiments with artificial and real world data
support our findings and demonstrate the power of the MSOM model.

1 Introduction

Recursive data processing is a challenging task for dealing with graph structured data,
or sequences as a special case. The natural domain of sequential data is given by series
of temporally or spatially connected observations – DNA chains and articulatory time
series are two examples. Usually, a vector representation exists or can be found for
individual sequence entries. Kohonen’s self-organizing map is a well known method
for projecting high dimensional data to a low dimensional grid, enabling analysis and
visualization [3]. The neural gas (NG) algorithm yields data representations based
on a small number of prototypes in the data space providing a minimum quantization
error [4]. However, temporal or spatial contexts within a series are usually taken into
consideration in terms of data windows. These windows are constructed as a serialized
concatenation of a fixed number of vectors from the input stream causing problems of
loss of information, curse of dimensionality, and usually inappropriate metrics. The
latter can be partially accounted for by adaptive metrics [5, 6].

Recently, increasing interest in unsupervised recurrent selforganizing networks
can be observed, that directly deal with sequential data. Prominent methods are the
temporal Kohonen map (TKM), the recurrent self-organizing map (RSOM), recursive
SOM (RecSOM), and SOM for structured data (SOMSD) [1, 2, 10, 11]. Comparisons
of these methods with respect to accuracy and efficiency have already been presented
in [7, 8]. However, little is known about which formalism underlies their storage
of temporal information. Especially for unsupervised approaches, a thorough under-
standing of the emerging representation is needed for their valid interpretation. The
focus of this contribution is a theoretical and experimental investigation of a very re-
cent, efficient, and promising approach, the Merge SOM (MSOM) [7]; the temporal
context of which combines the currently presented pattern with the sequence past in
an intuitive way. We will show that the MSOM model learns a fractal encoding of
recursive data, and thus MSOM follows up a successful technique, which is well-
established in supervised learning tasks [9].
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2 The Merge Context

Temporal processing requires a directional context for taking historic influence on the
present sequence state into account. Three basic types of context models can be found
in the literature for self-organized learning. The context given by TKM and RSOM
is implicitly expressed in the data space by summing up the exponentially weighted
historic errors of a neuron and the presented sequence element [1, 10]. The RecSOM
context has an explicit back reference to all the neuron activations in the previous
step [11]; these are stored as a vector in each neuron in addition to their pattern repre-
senting weight vector. Since this type of context is computationally very demanding
for large networks and is also subject to random activations, a compact version of this
refers to the previously winning neuron only, as realized by SOMSD [2]. The back
reference is implemented as a pointer to the location of the winner in a regular, usually
two dimensional SOM grid. Still, the explicit SOMSD context contains a major draw-
back: the dependence on a regular neuron indexing scheme. Therefore the following
Merging SOM (MSOM) context model has been developed.

In general, the merge context refers to a fusion of two properties characterizing
the previous winner: the weight and the context of the last winner neuron are merged
by a weighted linear combination. During MSOM training, this context descriptor is
calculated online and it is the target for the context vector ci of a neuron i. Target
means that the vector tuple (wi, ci) ∈ R

2n of neuron i is adapted into the direction of
the current pattern and context according to Hebb learning.

Definition of the Merge Context
The winner is the best matching neuron j, for which the recursively computed distance

d̃j(at) = (1 − α) · |at − wj |2 + α · |Ct − cj |2

to the current sequence entry at and the context descriptor Ct is minimum. Both
contributions are balanced by the parameter α. The context descriptor

Ct = (1 − β) · wI(t−1) + β · cI(t−1)

is the linear combination of the properties of winner I(t − 1) in the last time step.
A typical merging value for β ≥ 0 is 0.5.

The Merge Context for known Architectures
An integration of the merge context into self-organizing networks like the neural
gas model [4], Kohonen’s self-organizing map or the learning vector quantization
model [3] is easily possible. Here, we will focus on a combination of the context
model with neural gas that we will call merging neural gas (MNG).

After presentation of sequence element at, for each neuron j its rank k = rnk(j)
is computed, providing the information that k neurons are closer to at than neuron j
is. The update amount is an exponential function of the rank:

∆wj = η1 · exp(−rnk(j)/σ) · (at − wj)
∆cj = η2 · exp(−rnk(j)/σ) · (Ct − cj)

The context descriptor Ct has to be updated to date during training by keeping track
of the respective last winner. In experiments, the learning rates where set to identical
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values η1 = η2 = η. The neighborhood influence σ decreases exponentially during
training to obtain neuron specialization. The initial contribution of the context term
to the distance computation and thus to the ranking order is chosen low by setting the
weight/context balance parameter α to a small positive value. Since the weight repre-
sentations become more reliable during training, it is worth to gradually also pay more
attention to the context that refers to them. In the following, after an initial weight spe-
cialization, α has been successively steered to a final value that maximizes the neuron
activation entropy; in other words, the highest possible number of neurons shall be
on average identically active at the end of training. Thinking in terms of hierarchical
neural activation cascades this heuristic is not optimal, when a small number of often
visited root states are branching out to states of decreasing probability. However, the
α-control strategy proved to be very suitable in our experiments.

Properties of the Merge Context
In order to shed light on the convergence properties of the merge context, we determine
the optimum encoding given by context and weight vectors. The best adaptation of
neuron j is the one for which wj and cj yield d̃j(at) = 0:

d̃j(at) = (1 − α) · |at − wj |2 + α · |(1 − β) · wI(t−1) + β · cI(t−1) − cj |2

Both squared summands can be considered separately. The left one trivially becomes
the minimum 0 for wopt(t) = wj = at. Then, the right one expands to

copt(t) = (1 − β) · at−1 + β · cI(t−1)

= (1 − β) · at−1 + β · ((1 − β) · at−2 + . . . + β · ((1 − β) · a1 + 0))

=
t−1∑

j=1

(1 − β) · βj−1at−j

by induction with the zero context assumption that is associated with the beginning
at a1. Now, focusing on the convergence of a neuron that is specialized on a par-
ticular sequence element within its unique context, we obtain asymptotically stable
fixed points of the training update dynamic. The analysis of iterative weight updates
compared to the target vector yields:

|wI(t) + η · (at − wI(t)) − at| = (1 − η) · |wI(t) − at| ⇒ wI(t) → at

Which is an exponential convergence because of η ∈ (0, 1). Analogously,

|cI(t) + η ·
(
(1 − β) · wI(t−1) + β · cI(t−1) − cI(t)

)
− copt(t)| ⇒ cI(t) → copt(t)

describes the context convergence if we can show that

(1 − β) · wI(t−1) + β · cI(t−1) → copt(t) .

With wI(t−1) → at−1 and by induction of cI(t−1) → copt(t−1) with cI(1) := 0:

(1 − β) · at−1 + β · copt(t−1) = (1 − β) · at−1 + β ·
t−1∑

j=2

(1 − β) · βj−2at−j

=
t−1∑

j=1

(1 − β) · βj−1at−j = copt(t)
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Figure 1: Context associated with the current symbol 0 of a binary sequence.

This sum for copt denotes a fractal encoding of the context vector in the weight space,
which is known to be a very compact and efficient representation [9]. In experiments,
we can observe the emergence of a Cantor set like non-overlapping fractal context for a
merging parameter of β = 0.5. The spreading dynamic of the zero initialized context
in the weight space is self-organizing with respect to the density of the contextual
input. Since the context is a function of the previous winner’s weight and context,
the adaptation is a moving target problem; therefore, it is generally a good policy to
have either a faster weight than context update, or to put more influence on the pattern
matching than on the context matching by choosing α < 0.5.

3 Experiments

Exemplary Context development
Figure 1 displays the experimental context space resulting from the MNG training of
128 neurons for a random binary sequence containing independently drawn symbols
0 and 1 with P (0) = P (1) = 1/2. The plot is reduced to the 63 non-idle neurons
that represent the current symbol 0, that can be found as the lower line of zeroes.
The context fills the input space in (0, 1) with an almost equidistant spacing after
106 symbol presentations. The stacking of symbol lines indicates the reference to the
further past. Remarkably, the longest sequences which the neurons can still uniquely
discriminate, are arranged, as stated in the theory section, in a Cantor like way in the
context space.

Representation of the Reber grammar
This experiment refers to sequences generated by
the Reber automaton depicted in figure 3. The
7 symbols have been encoded in a 6-dimensional
Euclidean space. For training and testing we con-
catenated randomly generated Reber words and
produced sequences of 3 ∗ 106 and 106 input vectors,
respectively. The number of neurons is 617, the
merge parameter is β = 0.5, the starting neighborhood
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Figure 2: Reber graph.

size is σ = 617, and the context vector is initialized to 0∈ R
6, the center of grav-

ity of the embedded symbols. The learnings rate is η = 0.03; after training, the
adaptive parameters are σ = 0.5 and α = 0.43. Finally, the context information
stored within the ensemble of neurons has been analyzed. The average length of
Reber strings from the test sequence leading to unambiguous winner selection is
8.90187, whereby a number of 428 neurons develop a distinct specialization on Re-
ber words. The reference results of a hyperbolic SOMSD with 617 neurons are
an average string length of 7.23, and number of 338 active neurons [8]. In addi-
tion to this test sequence driven statistics, a network internal backtracking has been
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performed: on average 67.9 neurons referred to as the best matching contexts of
each single neuron represent the same symbol before a different symbol is encoun-
tered; this is a very strong support for a high context consistency and a proper prece-
dence learning. Therefore, a backtracking scheme has been used to collect the strings
for each neuron, composed of symbols represented by the recursively visited best
matching predecessors. The string assembly stops at the first revisit of a neuron:
words with an average length of 13.78 are produced, most of them with valid Re-
ber grammar. The longest word TVPXTTVVEBTSXXTVPSEBPVPXTVVEBPVVEB
corresponds, as for most other neurons, perfectly to the training set driven neuron
specialization TVPXTTVVEBTSXXTVPSEBPVPXTVVE.

Speaker identification by a posteriori MNG labeling
This experiment processes speaker data from the UCI repository1. Recordings from
9 speakers of the Japanese vowel ’ae’ are given as sequences of 12 dimensional fre-
quency based vectors. Each utterance comprises a number between 7 and 29 tem-
porally connected vectors. In the training set 30 articulations are available for each
speaker; in the test set there is a total of 370 utterances. Each articulation has its own
temporal structure; since between different utterances there is no temporal connec-
tion, a neuron d is added to represent the no-context-available-state by wd = cd in the
data center, being the default previous winner for an utterance start. After unsuper-
vised MNG training of 150 neurons without speaker identity, each neuron is assigned
a 9 bin histogram containing activation frequencies for the speakers from the training
set. For each articulation sequence in the test set, the accumulated majority vote over
the bins of activated neurons is calculated to identify the speaker. The resulting his-
tograms are very specific for the speakers. Applying the a posteriori labels, there is
no error on the training set and an error of only 2.7% on the test set, which is much
better than the reference error of 5.9% coming with the data set. Using 1000 neurons,
the error decreases to only 1.6%.

4 Conclusions

We have investigated the merge context model for temporally or spatially connected
sequential data. Context is obtained for self-organizing training architectures like
SOM, NG, or LVQ by referring back to the winner compactly described by a linear
combination of the represented weight and context. This recursive context definition
leads to an efficient fractal encoding, which is the fixed point of the dynamics of self-
organizing methods. Since the context emerges well during training, a preprocessing
by data partitioning or fractal encoding is not necessary for methods implementing
the merge context. As a consequence of self-organization, the capacity of the context
representation grows with the number of neurons. A maximum utilization of neurons
is forced by maximizing the network entropy by adjusting the context influence pa-
rameter α. Since recurrent neural networks cover the supervised learning tasks pretty
well, the main applications of the merge context model should be found for unlabeled
data. Nevertheless, an experiment of speaker recognition with a posteriori labeling
indicates that we can trust in the found context representations and that there is much
potential for processing labeled data, too.

1http://kdd.ics.uci.edu/databases/JapaneseVowels/JapaneseVowels.html
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The transfer of the merge context to the standard SOM is straight forward, only
that the neuron neighborhood function is not defined by the ranking but by the neu-
ral grid neighborhood. It should be kept in mind that for regular grids the SOMSD
approach might be more efficient. For supervised scenarios, preliminary results show
that after unsupervised MNG training a fine tuning with a modified merge context
LVQ is possible. Winner selection is done by taking the neuron j with smallest dis-
tance d̃j(at). In the case that the neuron is of the desired class, the update degenerates
to neural gas without neighbors. In the other case the weight vector wj is adapted an
η-step into opposite direction of at, but the context cj must still be adopted towards
Ct, because the context is the same in both cases.

As future work, more general metrics than the squared Euclidean distance are
considered and the interplay of the context influence and the context update strength
is investigated in more detail. Another, even more challenging research is connected
with the transfer of the presented sequential context to processing graph structures,
which will be the next step of our work.
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