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Abstract. In this work we describe experimental results regarding an optoelec-
tronic implementation of a dynamic neuron model. The model is a variation of
the FitzHugh-Nagumo equations, and it is implemented with linear optics and
simple linear electronic feedback. The demonstration of dynamic features of the
isolated neuron and of optical coupling between neurons is discussed, as well as
the computational perspective of large arrays of such neurons.

1 Introduction

Optics technology has long been studied as a potential implementation of neural hard-
ware, offering the advantages of parallelism and massive interconnection. Previous
works in optical implementation of artificial neural networks have covered nearly all the
common architectures, including multilayer feed-forward networks, associative memo-
ries [1], competitive learning, and self-organizing maps [2].

In defining computation-oriented neural models, it is common to abstract away the
details of the actual neural dynamic behavior and its pulse-producing mechanisms. This
approach corresponds to the so-called rate-code hypothesis, according to which the
pulse rate is the variable being encoded in neural activity. The idea that the specific
timing of the pulses may bear information (the time-code hypothesis) has only recently
gained attention in neural computation studies.

Time-based representation may be designed to exhibit interesting invariances. De-
cisions based on a few spikes only (instead of a time-based average of many spikes
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in order to estimate the rate) can lead to faster recognition times [10]. Finally, time-
based representations can use a combination of continuous and discrete computational
primitives, combining the strengths of both approaches [9].

Previous optical implementations of neural hardware have not, for the most part,
explored neural dynamic models. Hardware implementation of truly dynamic neural
models are just starting to emerge. We describe here an optoelectronic approach to
implementing a dynamical system similar to the FitzHugh-Nagumo (FN) neural model.
Experimental results are discussed, and the computational perspective of this approach
is presented.

2 Model and basic implementation idea

The FitzHugh-Nagumo (FN) neural model [8], is a mathematical abstraction of neural
dynamics, reducing the number of variables in the Hodgkin-Huxley Equations to only
two. The first one (v) is the excitable variable (related to the membrane voltage in more
complex models), while the second one (w) is a slower recovery variable, summarizing
the various dynamics that causes the neuron to return to its resting state. Those two
equations evolve according to

τv v̇(t) = f [v(t)] − w(t) + u(t)
τwẇ(t) = Av(t) − B − w(t), (1)

where u(t) is an external input. In the original work,f [v] was a third-degree polynomial
having three real roots in the region of interest,f [v] = v(1−v)(v−a), with 0 < a < 1.
This model was implemented electronically with tunnel diodes, and more recently with
piecewise linear functions [5].

The use of optics to produce nonlinear behavior is challenging, as the nonlinear re-
sponse of most media to light is very weak. Hybrid approaches, in which a detected
optical signal is fed back to modulate the optic source are advantageous in that per-
spective. Modulating the laser wavelength is an alternative way to obtaining nonlinear
dynamics [3]. The fundamental idea behind this approach is that the intensity output
of a linear optical system can vary nonlinearly with wavelength by means of spectrally
selective filters. If this output is detected and used to drive the electronic system that
modulates the laser wavelength, complex dynamics can result.

Consider a birefringent material placed between crossed polarizers (Figure 1). Even
though the propagation of the field through the material is a linear phenomenon (a linear
phase difference among orthogonal polarization components is generated), the output
power as a function of incident wavelength is sinusoidal. In semiconductor lasers, and
Vertical Cavity Surface Emitting Lasers (VCSELs) in particular, an input currenti pro-
duces a small modulation in the radiation wavelengthλ(i). A simple nonlinear feedback
loop can then be established, by feeding the detected signal back to the driver. This basic
arrangement has been used to investigate chaotic behavior in delayed-feedback tunable
lasers [3] . It is used here as the nonlinearity for an optical self-pulsing mechanism in
order to implement neural-like pulses based on the dynamical system shown in Equa-
tion 1. The simple RLC circuit implements the linear part of the dynamics, the current
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Figure 1: (a) Experimental setup for the wavelength-based nonlinear oscillator. (b)
Non-monotonic mapping f(v) from driving voltage to detected signal. (c) Experimental
evidence of self-pulsing regime at 1.2MHz, obtained when the VCSEL is biased.

through the inductor branch representing thew variable in Equation 1. The nonlinear
function f [v] is represented by the mapping from VCSEL driver voltage do detected
signal.

3 Dynamical features and coupling

The intuitive idea of using a sinusoidal mapping instead of FitzHugh’s third-degree
polynomial can be made more rigorous with the help of stability analysis. Neural re-
sponses can be broadly separated into two classes: a class ofintegrators, or neurons
that decay exponentially to rest in the absence of excitation and whose response to in-
put pulse frequency is monotonic in a large range of values, andresonators, neurons
which have natural oscillations in their unforced dynamics, and in consequence respond
preferably to a small range of input frequencies [4]. These two different behaviors can
be traced to two different process of stability loss.

We call the implemented neuron model a modified FN model in the sense that the
resulting bifurcation process belongs to the same class as the original model. In partic-
ular, the FN model is a resonator. It has an Andronov-Hopf bifurcation, characterized
by complex eigenvalues at the bifurcation point [4].

The isolated system exhibit the basic properties of integration, threshold, refractori-
ness and recovery. In Figure 2a, we show that the same system, with slightly different
electronic feedback (band-pass instead of low-pass), can exhibit bursting behavior. The
wavelength modulation mechanism explored in these experiments depends on heat dis-
sipation through the VCSEL cavity, a relatively slow mechanism that limits operation
to the MHz range. Other modulation effects do exist, however, that can be explored
well into the GHz range.

An important feature of this implementation is that it naturally combines optical and
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Figure 2:(a) Experimental evidence of bursting with a bandpass electronic feedback. (b) Verifi-
cation of the resonant behavior of the neuron and of the effect of optical inputs. First line: driver
waveform for an optical source incident on the photo-detector. Second line: Detected signal from
the neuron optical output.

electrical inputs, because it has an optical detector as part of the internal feedback of
the neuron model. Light from a second optical source, when focused onto the optical
detector, acts as an optical input.

To demonstrate this behavior, a short train of pulses was applied to the auxiliary
source driver, aiming at demonstrating the resonant property of the oscillator. We ex-
pect that, if pulse separation is close to the natural interval between spikes, they can
have a strong effect on the optical neuron, and that this effect should diminish both by
increasing or decreasing the inter-pulse interval. This contrasts with integrators, whose
response always is stronger for the shorter pulse interval. In Figure 2b a sequence of
two pulse triplets is repeatedly presented. The second triplet in the group is at resonant
frequency with the neuron’s internal dynamics. The first triplet, which is separated by
a shorter interval, indeed fails to elicit a strong response.

Next, two independent spiking circuits were implemented, to investigate their cou-
pling properties. Part of the optical signal from one feedback loop is sent to the other
(we will refer to these hereafter as the sending and receiving circuits, respectively).
The strength of coupling can be controlled by the amount of focusing of this coupling
beam into the receiving detector. In the experiments reported here, coupling is turned
on and off by blocking the path of this coupling beam. With this setup, the effect of
optical coupling can be shown at different bias levels for the receiving neuron. In Fig-
ure 3a, the biasing of the receiving circuit is such that sporadic noise-driven spiking is
observed without coupling. When optical coupling is allowed, the effect of the sending
neuron’s spikes can be seen both in sub-threshold oscillations at the detected signal of
the receiving neuron and in an increase frequency of spikes .

4 Perspectives for large spiking neuron arrays

The use of discrete devices is severely limited, and explored here as a proof-of-concept.
To be integrated in large scale, this neuron implementation requires a large array of
emitters, associated detectors and integrated electronics. These are common building
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Figure 3:Effect of coupling with the receiving circuit biased to the point of sporadic activity in
the absence of coupling. (a) No coupling (b) Coupling induces a larger number of spikes in the
receiving neuron.
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Figure 4: Simulated response of the spiking neurons to discrete variables changing in time.
Input peak values 110 mV. Input A connected to neurons 0-9, B connected to neurons 10-19.
One half of the interconnections randomly chosen to be set to zero. Remaining connections
chosen according to a uniform distribution in the range (0,0.06). Neurons 14 and 15 inhibited
by the spiking of neurons 0-9 (and thus do not spike when A and B are high), even though all
interconnections are positive.

blocks for the smart pixel array technology. Published results indicate the feasibility
of thousands of I/O ports with an output power uniformity of±10% for the VCSEL
array [6].

From a computational perspective, we are interested in the time-dependent coupling
feature that arises naturally when this type of neuron model is interconnected. In partic-
ular, the same input and interconnection strength can have excitatory or inhibitory effect
in the receiving neuron, depending on time-of-arrival. This is an interesting possibility
for optical implementation, where the representation of bipolar weights is a technolog-
ical issue. An example simulation of such time-dependent inhibitory effect is seen in
Figure 4.
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At the architectural level, we are currently evaluating the idea, present in recent
works in the area of spiking neural networks [7], of using large networks of fixed,
randomly connected spiking neuron as a reservoir of different dynamic responses to the
input data, which could than be adaptively combined in a classical supervised learning
architecture.

This work presents a dynamic neuron model in physical implementation, using sim-
ple linear electronics, low power (mW) optics, and conveniently combining optical and
electronic signals. For this approach to be feasible in large scale, it is necessary to in-
corporate integrated optoelectronic circuits. It is also worth investigating the possibility
of exploring other, potentially faster, wavelength modulation effects.
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