
Time Series Analysis for Quality Improvement: 
 a   Soft  Computing Approach 

 
 

K. Xu  and  S.H. Ng  

Department of Industrial and Systems Engineering 
National University of Singapore,  Singapore 117576. 

 
S.L. Ho 

 
The Centre for Quality and Innovation, Ngee Ann Polytechnic, Singapore, 

599489 
 

Abstract 

Quality improvement provides organizations with significant opportunities to reduce 
costs, increase sales, provide on time deliveries and foster better customer 
relationships. The design and manufacturing are among the critical processes for 
continuous quality improvement. Time series data collected from these processes are 
the useful source. While there are various techniques to explore these processes, 
Neural Networks (NN) approach is deemed as a promising alternative. However, as 
NN is a relatively new approach in quality engineering which is traditionally 
dominated by statistical analysis, there is still much doubt in its effectiveness 
compared with statistical modeling. The main focus here then is to construct a 
statistically reliable neural network model with an appropriate architecture to conduct 
the time series analysis. The purpose of this paper is thus two-fold. Firstly we develop 
the statistical interval analysis for neural network models which provide a statistical 
guide towards a reliable modeling architecture. Secondly, we apply the developed 
approach for quality improvement in various industries. 

Key words:  Quality Improvement, Time Series Analysis, Neural Networks, Soft 
Computing. 

 
 
1. Introduction 
 
Quality improvement provides organizations with significant opportunities to reduce 
costs, increase sales, provide on time deliveries and foster better customer 
relationships.  Such improvements can contribute considerably to the bottom line of 
these organizations.  The design and manufacturing are among the critical processes 
for continuous quality improvement. While there are various qualitative techniques to 
explore these processes, the most common approach is a quantitative approach. As 
such, the critical quality data collected in these processes are primary sources for 
further investigations into potential causes of poor quality.  Furthermore, these data 
can provide crucial information for decision making.  Interestingly, many of these 
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quality data are time series data. For example, automobile engine manufacturers are 
interested in the failure patterns of its engines over time as it provides important 
information for the life time predictions, warranty costs evaluations, and maintenance 
scheduling of its engines.  With the rapid advances in microelectronics packaging 
technology, electronics assembly manufacturers are collecting crucial on-line process 
monitoring data to dynamically track quality measures.  In semiconductor and 
materials industries, modeling the experimental data set of chemical vapor deposition 
process offers an effective approach for the off-line process quality improvement.  
 
In various nonlinear modeling for time series analysis approaches, neural networks 
(NN) approach is deemed as a promising alternative. There are many successful 
applications that are widely reported.  However, as NN is a relatively new approach in 
quality engineering, there is still much doubt in its effectiveness compared with 
traditional statistical modeling. The main focus here then is to construct a statistically 
reliable neural network model with an appropriate architecture to conduct the time 
series analysis.  The purpose of this paper is thus two-fold. Firstly we develop the 
statistical interval analysis for neural network models which provide a statistical guide 
towards a reliable modeling architecture, particularly when only a small number of 
training samples are available. Secondly, we apply the developed approach for quality 
improvement in various industries.  
 
The organization of this paper is as follows. Section 2 introduces a general framework 
for the time series modeling approach using neural networks. Section 3 develops the 
statistical interval analysis for NN models. Using the proposed approach for quality 
improvement, an industry application is presented in section 4. The conclusions are 
presented in section 5. 
 
2. General framework for time series modeling of neural networks 
A general time series forecasting model can be formulated as 
 

Xt+1 = f (X’t-m , A, B) 
where {X’t-m ; m = 0, 1, 2, …, p} represents a time series of lagged variables; A 
denotes the external explanatory variables, i.e. variables on which the series is thought 
to have a dependence if any; and B represents the random error variables. Xt can be 
represented in different forms. As the modeling progresses and once the NN model 
has adequately understand the underlying characteristics of the time series, future 
outcomes can be predicted when presented with new data patterns.  
 
3. Statistical interval analysis for neural networks 
 
computing the statistical intervals such as the prediction intervals allow us to quantify 
these uncertainties and therefore provide more information. In prediction tasks, it is 
desirable to construct confidence bounds upon the resulting point forecasts.Our 
approach is generally following the line of the non-liner regression. However, we 
improve the traditional error variance estimation method which may result in errors 
when only limited samples are available. Furthermore, we propose to use the 
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statistical interval analysis and coverage assessment as a guide to select the 
appropriate NN architecture. Hence, the constructed model may be statistical reliable.    

3.1. Quantifying Uncertainties via Non-linear Regression 
Given a general multi-response nonlinear model: 

( ) εθxfy += *; , 

the least-squares estimate of true value of an actual process is θ , which is obtained 
by Levenberg-Marquardt (LM) algorithm through minimizing the error function (1) in 
Bayesian regularization. The error term ε , is assumed to be  :  prediction error 
vector from training data sets.  

0θ ˆ

Dε

Given the prediction from the model as ( )θxfy ˆ;ˆ = ,   ( )θxf ˆ;  can be approximated in 
terms of ( )*;θxf  by first-order Taylor expansion: 
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where p is the number of parameters.  

The difference between the true value and the predicted value  for points that 
are not used to train the model is given by: 
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Assuming statistical independence between ε  and , the variance can be expressed 
as: 
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The estimates for the parameters of NN model obtained via Levenberg-Marquardt 
(LM) algorithms are:   

( )*1ˆ JθεJHθ +′= − T , 

where, H  is the Hessian matrix and  is the Jacobian matrix of the training sets error.  J

Therefore, the asymptotic variance of the estimated parameters can be approximated 
by: 

( ) 112*ˆVar −−≈− JHJHθθ Ts  
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For large samples, we have approximately ( Seber and Wild, 1989):  

[ ]00

00

ˆVar

ˆ

yy
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−

− ∼  δ−nt

where, is student t-distribution with δ−nt δ−n  degrees of freedom; n is the number 

of training. We will discuss the selection of δ  in following section. 

It follows that an approximate 100(1−γ )% prediction interval for the predicted value 

is given by: 0ŷ
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3.2. Error Variance Estimation  

In the discussion of De Veaux et al. (1998),  for conventional  MLP and NN with 
weight decay method, the estimated error variance is given by 

pn
E

s D

−
=2  , where is 

the number of parameters which could be very large and, in some cases, may be larger 
than n; such that estimation of prediction interval is impossible. By stopping the 
algorithm before convergence, the weights or bias are shrunk toward 0, thus reducing 
the effective number of parameters in the models.   However, this would result in 
overly conservative prediction intervals.   

p

NN model using Bayesian Regularization (BR) is broadly used to keep the over-
fitting problem in check (MacKay (1992) and Foresee and Hagan (1997)). Thus, our 
approach in using the effective parameter δ  estimated from the BR process is a 
reasonable alternative to the statistical interval analysis. In MacKay (1992) and 
Foresee and Hagan (1997), ( ) 1Trace2 −−= Hαδ p  is the defined as the effective 
number of parameters; p is the number of parameters of NN. H is the Hessian matrix 
of the objective function  ( ) θαβθ EEF D +=   where ( ) ( )** yyyy −−=

T
DE  is the 

residual sum of squares,  is the sum of squares of the network coefficients 
(weights and bias), and 

θθTE =θ

α  and β  are the objective function parameters whose 
relative size determines the training direction. Therefore, in our statistical interval 
formulation, 

δ
σ

−
=≈

n
Es D

D
22  .  It implies that the actually number of weights and bias 

(effective parameters in the models) would be significantly smaller when using the 
NN modeling with BR. Therefore, it may effectively prevent over-fitting of models 
when sparse data sets are available for training.   

3.3. Statistical Guide of Selecting the NN Architecture Parameters  

The probability of coverage of the prediction interval is approximately equal to the 
nominal (1−γ ) with large sample sizes (asymptotic inference). This can be evaluated 
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empirically using Monte Carlo simulation. We conduct 5000 simulations using 
different NN models trained with extra random error to response data settings. The 
coverage percentage is calculated based on all run designs. The random noise is 
assumed to be normal with mean 0 and a small standard deviation (in practice, values 
of σ  near 0.1 are common (De Veaux et al., 1998)). Taking into account the noise in 
the training data set, a more suitable measure would be βσ 11.0 += , where β  is the 
noise of the training data sets and readily available from the BR process. The 
coverage probability can then be estimated from the simulation as : Coverage 
probability

 run)  experiment  of(number *5000
 intervalswithin      pointsd  predicteofnumber   = .  Therefore, we can use the 

statistical interval as well as the coverage probability as the measure to select the 
appropriate the NN parameters such as the number of the hidden units etc. This way, 
the model constructed is statistical reliability in some sense.  

 

4. Cases Study: Process modeling and improvement 
 
In semiconductor and material industries, chemical vapor deposition (CVD) process is 
the essential technique for depositing silicon nitride, silicon dioxide, polysilicon, 
refractory metals etc.( Jaeger, 1988) or materials synthesize . Plasma-enhanced CVD 
(PECVD) improves CVD by allowing the process to form a thin film on a substrate 
surface at the relatively low temperature. Fig. 1 shows a typical layout of a plasma 
CVD apparatus with a parallel plate electrode structure. A substrate is placed on the 
grounded electrode. The reaction gas is supplied from the opposite plate in order to 
form a uniform film. 

 
Figure 1.  The typical layout of a plasma CVD apparatus 

As a widely used technique, modeling and optimizing this process has received much 
attention for many years. In this example,  Eight factors: : cleaning method; : 
chamber temperature; : batch after cleaned chamber; : flow rate of SiH

1x 2x

3x 4x 4; : 
flow rate of N

5x
2; : chamber pressure; : R.F.power; : deposition time are selected 

to analyze two quality characteristics: , the deposition thickness and a refractive 
index .  The total number of the training samples is 16. Due to small number of 

6x 7x 8x

1y

2y
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samples, a statistical interval analysis should be used to provide a reliable modeling.  
Here, we select the three layers neural networks of BR with 8 input nodes, 2 output 
nodes and 12 hidden layers based on the proposed prediction interval analysis and 
coverage assessment process. The sum of squares errors for two responses are 
2.6586e+004 (y1) and 0.0660 (y2). The coverage is 94.8% for y1 and 98.8% for y2.  
The average half the length of 95% prediction intervals is 326.104 for y1 and 0.514 for 
y2. Note that final solutions are very close to the defined targets of the two responses 
(y1=1000, y2=2.0).  Note that the developed neural network method can be easily 
adjusted to modeling different controls factors and quality measures of processes. 

                                           Table 1.  Best settings for PECVP Experiments 

x1 x2 X3 x4 x5 x6 x7 x8 Y1 y2

2.0 1.17 1.0 1.0 1.0 1.0 3.0 3.0 995.48 2.0090 
2.0 1.18 1.0 1.0 1.0 1.0 3.0 3.0 994.71 2.0083 

 
5. Conclusions 
 
This paper investigates the application of time series approach under the umbrella of 
soft computing, particularly neural networks, to modeling and improve the process 
quality.  A statistical interval analysis approach is developed and thus the appropriate 
neural networks architecture can be selected to provide reliable modeling for quality 
improvement.   
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