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Abstract. We derive analytical expressions of local codim-1-bifurcations for a
fully connected, additive, discrete-time RNN, where we regard the external inputs
as bifurcation parameters. The complexity of the bifurcation diagrams obtained
increases exponentially with the number of neurons. We show that a three-neuron
cascaded network can serve as a universal oscillator, whose amplitude and fre-
quency can be completely controlled by input parameters.

1 Introduction

An important approach to the understanding of the complex dynamical behaviour of
recurrent neural networks (RNNs) is the study of their bifurcation manifolds. These
manifolds separate regions in parameter space, which exhibit qualitatively different
dynamical behaviour. Knowledge of these manifolds on the one hand deepens our
understanding of RNNs and on the other hand allows us to directly choose parameter
sets which cause a specific dynamical behaviour.

We concentrate on oscillatory behaviour of small networks, which already exhibit
all kinds of dynamical behaviour and thus can serve as basic pattern generators within
more complex networks, which in turn would have higher-order information process-
ing capabilities due to resonance and synchronisation effects between its components
or with respect to time-dependent inputs.

While it is commonly known, that weight parameters directly influence the dy-
namical behaviour of RNNs, we consider the external inputs as main bifurcation pa-
rameters and show that a three-neuron network can serve as a universal oscillator,
whose amplitude and frequency – within a certain range determined by the weights –
can be completely controlled with inputs.

The most simple bifurcation types are codim-1 bifurcations of fixed points, which
are determined by a single bifurcation condition. Many authors have studied these bi-
furcation manifolds in discrete- and continuous-time neural networks before, but they
employed numerical methods only and often restricted their analysis to simplified
connection matrices [Beer, 1995; Pasemann, 2002; Tonnelier et al., 1999]. The first
attempt to compute bifurcation manifolds of RNNs analytically was made by Hoppen-
steadt and Izhikevich [1997], who employed specific properties of the Fermi function
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bifurcation type eigenvalue condition necessary test condition
saddle node λ = +1 det(J(x̄) − 1) = 0
period doubling λ = −1 det(J(x̄) + 1) = 0

Neimark-Sacker λ1,2 = e±iω

e±iω·k �= 1 for k = 1, 2, 3, 4
det(J(x̄) � J(x̄) − 1) = 0

Table 1: Test conditions for codim-1 bifurcations of discrete-time dynamical systems.
J � J is the bialternate product of matrices J ∈ R

n×n, also known as Kronecker
product [Kuznetsov, 1995]. Its eigenvalues equal λiλj , 1 ≤ i ≤ j ≤ n.

to derive bifurcation curves of continuous-time networks. Using the same approach
we already computed analytically the bifurcation curves of discrete-time two-neuron
networks [Haschke et al., 2001].

The approach presented in this paper is applicable to networks of arbitrary size
and with arbitrary activation, though the expressions become especially simple for
the hyperbolic tangent. This extends numerical continuation techniques [Kuznetsov,
1995], which can be used to compute one-dimensional bifurcation manifolds [Beer,
1995]. Explicitly, we state the expressions for a three-neuron network. It turns out,
that for more complex networks the input space is divided by so many bifurcation
manifolds, that a numerical analysis and a visualisation are not feasible any more.

After the derivation of the expressions for bifurcation manifolds of saddle-node,
period-doubling and Neimark-Sacker bifurcation in section 2, we compute them for a
cascaded network and discuss its dynamical behaviour in section 3.

2 Derivation of Bifurcation Manifolds

We consider discrete-time recurrent neural networks

x �→ tanh(Wx+ u) , x ∈ R
n (1)

with weight matrix W and external inputs u. We can restrict the activation function
to the hyperbolic tangent, because it can be shown that all sigmoid activation func-
tions within the class S0 = {σα,β,µ(x) = α tanh(µx) + β |α, µ ∈ R+, β ∈ R} in-
troduced by Tiňo et al. [2001], produce topologically equivalent dynamical behaviour
[Haschke, 2003]. A local codim-1-bifurcation of a fixed point is defined by the fixed
point condition

x̄ = tanh (W x̄+ u) (2)

and an appropriate condition on the eigenvalues of the Jacobian

J(x̄) = D(x̄) ·W with D(x̄) = diag
(
tanh′(W x̄+ u)

)
. (3)

All eigenvalue conditions of codim-1 fixed-point bifurcations are displayed in table 1
together with corresponding necessary test conditions, which are simpler to check.
These conditions are determinant expressions involving J(x̄) and thus are analytical
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(b) Bifurcation manifold in input space.

Figure 1: Neimark-Sacker bifurcation manifolds. Branches
in ψ-space split into 23 branches in input space.
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functions of the entries of J(x̄). To derive a bifurcation manifold, this system of
nonlinear equations – composed of (2) and the appropriate test condition of table 1 –
has to be solved for the external inputs u ∈ R

n, yielding a n-1-dimensional manifold
in input space. To this end, we assume that the network’s weights are constant or at
least varying on a slow time scale.

The key idea is to split the solution process into two stages: First we solve the test
condition within the abstract space of derivatives

ψ(x̄) := tanh′(W x̄+ u) = 1 − tanh2(W x̄+ u) (2)= 1 − x̄2 ∈ (0, 1]n

and subsequently we transfer the resulting n-1-dimensional solution manifold to input
space. While this approach is applicable for networks of arbitrary size, we state the
solution for three-neuron networks to simplify matters. For saddle-node and period-
doubling bifurcations we obtain conditions, which are linear w.r.t. each ψi:

det(J ∓ 1) = ∓ 1 +
∑
ψiwii + ψ1ψ2ψ3 detW

∓ [ψ1ψ2 detW(3) + ψ2ψ3 detW(1) + ψ1ψ3 detW(2)] = 0

ψ1 =
±1 − ψ2w22 − ψ3w33 ± ψ2ψ3(w22w33 − w23w32)

w11 ∓ ψ2(w11w22 − w21w12) ∓ ψ3(w11w33 − w13w31) + ψ2ψ3 detW

whereW(i) denote the submatrices ofW obtained by deletion of i-th row and column.
Without loss of generality we solved for ψ1. Whenever the denominator of the result-
ing rational function becomes zero, we observe a discontinuity of the solution, such
that we obtain separate branches of the bifurcation manifold. The Neimark-Sacker
bifurcation condition becomes:

det(J � J−1) = −1 + (ψ1ψ2M11 + ψ1ψ3M22 + ψ2ψ3M33) + ψ2
1ψ

2
2ψ

2
3 det(M)

− [ψ2
1ψ2ψ3 detM(3) + ψ1ψ2ψ

2
3 detM(1) + ψ1ψ

2
2ψ3 detM(2)] = 0

where M := W �W =
(w22w11−w21w12 w23w11−w21w13 w23w12−w22w13
w32w11−w31w12 w33w11−w31w13 w33w12−w32w13
w32w21−w31w22 w33w21−w31w23 w33w22−w32w23

)
.
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This condition is quadratic with respect to each ψi and its solution manifold splits into
several branches in turn.

Note, that the test conditions as well as the bifurcation manifolds in ψ-space are
actually independent of the chosen activation function tanh, which only influences
the back transformation to the input space, which can be achieved solving (2):

u = tanh−1(x̄) −W x̄ with x̄ = ψ−1(ψ) . (4)

Because ψi(x̄i) is a quadratic function of x̄i, we obtain two valid preimages xi for
each ψi ∈ (0, 1]. Consequently the bifurcation manifolds in ψ-space split into 2n

different branches in input space, leading to very complex bifurcation diagrams for
large networks and making a numerical computation and a visualisation not feasible
any more for n > 3.

In order to visualise the solution manifolds, they have to be sampled along a reg-
ular n-1-dimensional grid located in ψ-space. To achieve a uniform sampling of data
points, it is necessary to adapt the step size ∆ψk according to the gradient of the
manifold at a given sampling point. Fig. 1 shows the Neimark-Sacker bifurcation
manifolds of a simple three-neuron network. Due to the branching during back trans-
formation into input space, the bifurcation diagram in input space (Fig. 1b) is much
more complex than that in ψ-space (Fig. 1a).

Although the abstract ψ-space allows for a simpler representation of the bifurca-
tion manifolds, it cannot be used for a separation into different regions of dynamical
behaviour, because the mapping from fixed points x̄ or inputs u to ψ-values is many-
to-one – e.g. coexisting stable and unstable fixed points cannot be distinguished from
a globally stable situation.

3 Bifurcation Manifolds of a cascaded 3-neuron RNN

As an example we study the dynamical properties of the cascaded 3-neuron RNN,
shown in Fig. 2. It is composed from a two-neuron network, which exhibits stable
oscillatory behaviour within a circular region in the u1-u2-plane and which projects
onto a third neuron, which exhibits an hysteresis domain of two stable fixed points in
an interval [u−3 , u

+
3 ], if the self-feedback weight c > 1 [Pasemann, 2002, 1993].

Due to the cascaded nature of the network, its qualitative dynamical properties
can be derived without computation of the bifurcation manifolds. In fact it can be
proven for general cascaded networks, that the test conditions split into the appropriate
conditions of the recurrent subnetworks, such that the bifurcation manifolds in ψ-
space resemble those of the subnetworks [Haschke, 2003].

Hence, all neurons become oscillatory if the inputs u1-u2 enter the central verti-
cal tube in the bifurcation diagram of Fig. 2, which resembles the circular bifurcation
curve of the x1-x2 subnetwork. The saddle-node bifurcation points u±3 vary as a func-
tion of the average activities x̄1, x̄2, which in turn depend on the inputs u1, u2. Con-
sequently the saddle-node bifurcation surface smoothly varies in three-dimensional
input space.

While the oscillation frequency is completely determined by the oscillator sub-
network, the amplitude of the x3-oscillation can be varied smoothly as function of
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Figure 2: Bifurcation manifolds of a cascaded network, composed of an oscillatory
two-neuron network which projects to a single Cusp neuron.

the input component u3 (Fig. 3). The largest amplitudes occur, if the overall input
h = u3 +

∑
w3jxj becomes zero in average, i.e. varies about the point of maximal

slope. In this case the external oscillatory input has the largest impact on x3.
The hysteresis due to the Cusp bifurcation of the single neuron is preserved in the

externally driven case as well: If the input u3 is varied from negative to positive values
and back we observe a switching between two stable periodic orbits. If the amplitude
of the external input becomes large enough, the state x3 continously switches between
the two stable fixed-point branches of the Cusp neuron, resulting in a rectangular
oscillation of maximal amplitude. Fig. 4 shows that we can generate various wave
forms in dependence of b1 (u = 0 is chosen).

4 Discussion

We present analytical expressions for bifurcation manifolds in the input space of gen-
eral discrete-time RNNs, which we solve for the case of three-neuron networks. Em-
ploying these expressions, we can visualise the complex partitioning of the input space
into regions of different dynamical behaviour. This allows us to choose directly in-
put control variables in order to provoke a specific dynamical behaviour. Clearly, the
3d-bifurcation manifolds of Fig. 1, 2 cannot be obtained in reasonable time by simu-
lation and inspection of the observed time series. Hence, our new approach admits the
computation of bifurcation manifolds of networks with more than two neurons.

Note, that we restrict ourselves to codim-1 bifurcations of fixed points. The whole
bifurcation diagram can be more complex and may contain bifurcations of higher
codimension, bifurcations of periodic points, and global bifurcations, whose corre-
sponding manifolds cannot be computed analytically yet. Nevertheless fixed point
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Figure 3: The oscillation amplitude of x3 as a function
of the input component u3 and the feedforward weight
b1 (b2 = 0). It can be varied smoothly from zero to a
certain maximum, which depends on the weight matrix.
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Figure 4: Time series
of oscillatory neurons
(above) and driven Cusp
neuron (below) as func-
tions of b1 ∈ {1, 2, 10}.

bifurcations are the most frequently occurring bifurcations, bounding the parameter
space corresponding to globally asymptotic behaviour.

If large networks with only a few input channels are considered, the bifurcation
diagram in the high-dimensional input space has to be restricted to a low-dimensional
cross section. Nevertheless the complicated structure of the bifurcation diagram per-
sists, because it originates from the bifurcation condition involving the high-dimensional
state-space of all neurons.
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