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Abstract. In this work we derive a new on-line parametric model
for time series forecasting based on Vapnik-Chervonenkis (VC) theory.
Using the strong connection between support vector machines (SVM) and
Regularization theory (RT), we propose a regularization operator in order
to obtain a suitable expansion of radial basis functions (RBFs) with the
corresponding expressions for updating neural parameters. This operator
seeks for the “flattest” function in a feature space, minimizing the risk
functional. Finally we mention some modifications and extensions that
can be applied to control neural resources and select relevant input space
in order to avoid high computational effort (batch learning).

1 Introduction

The purpose of this work is twofold. It introduces the foundations of SVM
[1] and its connection with RT [2] in order to show the new on-line algorithm
for time series forecasting. SVMs are learning algorithms based on the struc-
tural risk minimization principle [1] (SRM) characterized by the use of the
expansion of SV “admissible” kernels and the sparsity of the solution. They
have been proposed as a technique in time series forecasting [3] and have faced
the overfitting problem, presented in classical neural networks, thanks to their
high capacity for generalization. The solution for SVM prediction is achieved
solving the constrained quadratic programming problem thus SV machines are
nonparametric techniques, i.e. the number of basis functions are unknown be-
fore hand. The solution of this complex problem in real-time applications can
be extremely uncomfortable because of high computational time demand.
SVM are essentially Regularization Networks (RN) with the kernels be-
ing Green’s function of the corresponding regularization operators [4]. Using
this connection, with a clever choice of regularization operator (based on SVM
philosophy), we should obtain a parametric model being very resistant to the
overfitting problem. Our parametric model is a Resource allocating Network [5]
characterized by the control of neural resources and by the use of matrix decom-
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positions, i.e. Singular Value Decomposition (SVD) and QR Decomposition to
input selection and neural pruning [6].

We organize the essay as follows. SV algorithm and its connection to RT
Theory will be presented in sections 2 and 3. The new on-line algorithm will be
compare to a previous version of it and the standard SVM in section 4. Finally
we state some conclusions in section 5.

2 SVM and Regularization Theory

The SV algorithm is a nonlinear generalization of the generalized portrait de-
veloped in the sixties by Vapnik and Lerner in [1]. The basic idea in SVM for
regression and function estimation, is to use a mapping function ® from the
input space X into a high dimensional feature space F and then to apply a
linear regression. Thus the standard linear regression transforms into:

f(@) = (w-®(x)) +. (1)

where ® : X — F, b is a bias or threshold and w € F is a vector defining the
function class. The target is to determinate w, i.e. the set of parameters in the
neural network, minimizing the regularizated risk expressed as:

Rreg[f] :Remp[f]+)‘||w”2 (2)

thus we are enforcing “flatness” in feature space, that is we seek small w. Note
that equation 2 is very common in RN with a certain second term. SVM
algorithm is a way of solving the minimization of equation 2, that can be
expressed as a quadratic programming problem using the formulation stated
in [1]. The optimization problem is solve constructing a Lagrange function by
introducing dual variables, and the selected loss function. Once it is uniquely
solved, we can write the vector w in terms of the data points as follows:

y4

W= (a;—a})®(). 3)

i=1

where a;, o) are the solutions of the mentioned quadratic problem. Once this
problem, with high computational demand !, is solved we take equation 3 into
1 and obtain the solution in terms of dot products:

L

f(x) = (@i = ai){@(zi) - (x)) +D. (4)

=1

At this point we use a trick to avoid computing the dot product in high
dimensional feature space in equation 4, replacing it by a kernel function that

IThis calculation must be compute several times during the process
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satisfies Mercer ‘s condition. Mercer s Theorem [7] guarantees the existence of
this kernel function:

flz) = Zh Kz, ) +b. (5)

where h; = (o; — af) and k(z;, ) = (P(x;) - (x)).

RT appeared in the methods for solving ill posed problems [2]. In RN we
minimize a expression similar to equation 2. However, the search criterium
is enforcing smoothness (instead of flatness) for the function in input space
(instead of feature space). Thus we get:

Reeglf] = Remlf] + 511BSI. (©

where P denotes a regularization operator in the sense of [2], mapping from the
Hilbert Space H of functions to a dot product Space D such as (f,g9) Vf,g € H
is well defined. Applying Fréchet ‘s differential® to equation 6 and the concept
of Green s function of P*P3, we get [6]:

L

f(x) =AY lyi = fl@i)]e - Gla, ). (7)

i=1

The correspondence between SVM and RN (equations 5 and 7) is proved if
and only if the Green’s function G is an “admissible” kernel in the terms of
Mercer ‘s theorem [7],i.e. we can write G as:

G(zi, xj) = (P(x;), ®(z5)) with @ :x; — (PG)(xy,.). (8)

Prove: Minimizing ||P f||? can be expressed as:

[PAP = [ da(Ps)? = [ def(o)PPs(2) )
we can expand f in terms of green’s function associated to P, thus we get:

[PfI[2 = 5225 hih [ deGie, )P PG a 2,) w0)
= Zi,j hih] fdl’G(‘I, ZL'J(;(:Z? — l’j) = Zi,j hthG(xJ,xl)

then only if G is Mercer Kernel it correspond to a dot product in some feature
space. Then minimizing 6 is equivalent to minimize 2f. A similar prove of this
connection can be found in [4]. Hence given a regularization operator, we can
find an admissible kernel such that SV machine using it will enforce flatness
in feature space and minimize the equation 6. Moreover, given a SV kernel we
can find a regularization operator such that the SVM can be seen as a RN.

2Generalizated differentiation of a function: dR[f] = [%R[f + ph]]7 where h € H.
3p*p. G(zi,x;) = 0(x; — xj), (here § denotes the Dirac’s §, that is (f,d(x;)) = f(xs))
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3 On-line Algorithm Using Regularization Op-
erators

In this section we show a new on-line RN based on “Resource Allocating Net-
work” algorithms (RAN) 4 [5] which consist of a network using RBFs, a strat-
egy for allocating new units (RBF's), using two part novelty condition [5]; input
space selection and neural pruning using matrix decompositions such as SVD
and QR with pivoting [6]; and a learning rule based on SRM [1]. Our network
has 1 layer as is stated in equation 5. In terms of RBFs the latter equation can
be expressed as:

N(#)

Z h; - exp < W) +b. (11)

where N (t) is the number of neurons, z,(t) is the center of neurons and o;(t)
the radius of neurons, at time “t”. In order to minimize equation 6 we pro-
pose a regularization operator based on SVM philosophy. We enforce flatness
in feature space, as described in section 2, using the regularization operator
IPFII? = [[wl[2, thus we get:

Ryeglf] = Remplf Z hihjk(zi, x;). (12)

i,j=1

We assume that Rep, = (y — f(x))? we minimize equation 12 adjusting the

centers and radius (gradient descend method Ay = fnag;if], using Chernoff
bounds):
N(t)
Az; = —2£(m —e)hi(f(@) —y)k(z,2) +a Y hibgk(eg,a) (@ — ;). (13)
’ i,j=1
and
Ahi = a(t)f(z:) —n(f(x) — y)k(z, ). (14)

where a(t), &(t) are scalar-valued “adaptation gain”, related to a similar gain
used in the stochastic approximation processes [6], as in these methods, it
should decrease in time. The second summand in equation 13 can be evaluated
in several regions inspired by the so called “divide-and-conquer” principle and
used in unsupervised learning, i.e. competitive learning in self organizing maps
[8] (SOM) or in SVMs experts [9]. This is necessary because of volatile nature
of time series, i.e. stock returns, switch their dynamics among different regions,
leading to gradual changes in the dependency between the input and output
variables [6]. Thus the super-index in the latter equation is redefined as:

Ne(t) = {si(t) : [Ja(t) — ()| < p}- (15)

the set of neurons close to current input.

4The principal feature of these algorithms is sequential adaptation of neural resources.
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Table 1: Evolution of NRMSE(Normalized Root Mean Square Error), number
of neurons and input space dimension. Xth-S detones the Xth-step prediction
NRMSE on the test set.Each cell: neurons / dimension

Method 1st-S  25th-S  50th-S  75-th 100th-S
NAPA_PRED 1.1982 0.98346 0.97866 0.91567 0.90985

Standard SVM  0.7005 0.7134 0.7106 0.7212 0.7216
SVM_online 0.7182 0.71525 0.71522 0.72094 0.7127

NAPA_PRED 12/6 19/8  16/8  17/11 15/11
SVM_online  7/5  8/5 9/6 12/6  9/7

4 Experiments

The application of our network is to predict complex time series. We choose
the high-dimensional chaotic system generated by the Mackey-Glass delay dif-
ferential equation:

dz(t)
dt

o a(t—T)
1420 —7) "

=—b-z(t)+a (16)
with b = 0.1, @ = 0.2 and delay t; = 17. This equation was originally pre-
sented as a model of blood regulation [10] and became popular in modelling
time series benchmark. We add two modifications to equation 16: Zero-mean
gaussian noise with standard deviation equal to 1/4 of the standard deviation
of the original series and dynamics changes randomly in terms of delay (be-
tween 100-300 time steps) t; = 17,23,30. We integrated the chaotic model
using MatLab software on a Pentium III at 850MHZ obtaining 2000 patterns.
For our comparison we use 100 prediction results from SVM _online (presented
in this paper), standard SVM (with e-insensitive loss) and NAPA_ PRED (RAN
algorithm using matrix decompositions being one of the best on-line algorithms
to date[6]). Clearly there’s a remarkable difference between previous on-line al-
gorithm and SVM philosophy. Standard SVM and SVM _online achieve similar
results for this set of data at the beginning of the process. In addition, there s
is noticeable improvement in the last iterations because of the volatile nature
of the series. The change in time delay t4, leads to gradual changes in the
dependency between the input and output variables and, in general, it “s hard
for a single model including SVMs to capture such a dynamic input-output
relationship inherent in the data. Focussing our attention on the on-line algo-
rithm, we observe the better performance of the new algorithm as is shown in
Table 1.
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5 Conclusions

Based on SRM and the principle of “divide and conquer” | a new online algo-
rithm is developed by combining SVM and SOM using a resource allocating
network and matrix decompositions. Minimizing the regularizated risk func-
tional, using an operator the enforce flatness in feature space, we build a hybrid
model that achieves high prediction performance, comparing with the previous
on-line algorithms for time series forecasting. This performance is similar to
the one achieve by SVM but with lower computational time demand, essential
feature in real-time systems. The benefits of SVM for regression choice con-
sist in solving a -uniquely solvable- quadratic optimization problem, unlike the
general RBF networks, which requires suitable non-linear optimization with
danger of getting stuck in local minima. Nevertheless the RBF networks used
in this paper, with the help of various techniques obtain high performance, even
under extremely volatile conditions, since the level of noise and the change of
delay operation mode applied to the chaotic dynamics was rather high.
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