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Abstract – The emergence of surface mount technology devices has resulted in several 
important advantages including increased component density and size reduction on the printed 
circuit board, on the expense of quality inspection. Classical visual inspection techniques 
require time-consuming image processing to improve the accuracy of the inspected results. In 
this paper we reduce the computational complexity of classical machine vision approaches by 
proposing two neural network based techniques. In the first we maintain image information 
only in the form of edges, whereas the second we preserve the entire content of info but 
compressed in a single dimension through image projections. Both algorithms are tested on real 
industrial data. The quality of inspection is preserved while reducing the computational time. 
 

1. Introduction 
The technology of Surface Mount Devices (SMDs) has been widely used in 

printed-circuit board (PCB) assemblies, increasing substantially the component 
density and reducing the size of components on the PCB. These attributes, however, 
make the quality inspection of SMDs more critical and complicated [1]. Visual 
inspection techniques require extensive image processing for improving the image 
quality and deriving characteristic features. The limitation of computer-based tools 
related to computer time and working space poses a high priority on the objective 
choice of a limited number of essential characteristics ( feature-space reduction) but 
also on the exclusion of redundant observations (data-space reduction). Thus, the 
concept of approximate processing [3], has been considered in real-time applications, 
where there is a necessity for approximating a given algorithm with another that has 
reduced computational cost. We adopt two different forms of data-space reduction 
[4] directly on the initial image space, affecting: 1) the intensity levels or dynamic 
range, by transforming the gray-scale image into a binary edge image (referred to as 
reduced dynamic-range processing ) and 2) the number of independent variables, by 
utilizing only specific projections  of the data  (referred to as reduced input-dimension 
processing).  

We employ the abovementioned framework for analyzing SMD images and 
estimating lead displacements. A novel Bayesian framework for such analysis is 
proposed in [2]. The paper proceeds in Section 2 with our experimental set up. 
Section 3 presents the associative memory classifier that implements our reduced 
dimensionality approach in terms of intensity levels. The concept of reduced 
dimensionality processing in terms of data dimensions is studied in Section 4. Our 
methods are applied on SMD post placement quality inspection and the results are 
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presented in Section 5. Section 6 concludes this study with relevant observations 
regarding the theoretical development and experimental performance of our 
algorithms. 

 
2. Experimental Set up 
 

A high dynamic range CMOS camera, equipped with a simple led illumination 
device and a general-purpose processor, performs the acquisition of the component 
image. For the purpose of presenting our results, QFP (Quad Flat Pack) SMD 
components with 120 leads (30 leads per side) are employed. Following the image 
acquisition, the four regions of interest  (ROIs) are isolated and all 120 small lead-
images are extracted. The density of the CMOS sensor is 1024x1024 pixels, deriving 
an image resolution of 20x20µm per pixel. To capture the entire area of interest 
around each lead, the size of the lead images is set to 35x56 pixels. Each lead image 
captures information about four areas of interest, namely lead, pad, paste and 
background. The features are extracted from segmented lead images. For the purposes 
of estimating other quality measures, only the displacement along the side of the 
component is essential [2]. Thus, our problem is restated as estimating lead 
displacement at the direction perpendicular to the lead axis. Essentially, we consider 
quantized displacement estimations organized at multiples of a pixel displacements. 
The displacement classes we consider are {-6, -3, 0, +3, +6} and {-6, -4, -2, 0, +2, +4, 
+6}, in pixel displacements over the lead over its central position. The proposed 
reduced dimensionality approach overcomes segmentation problems by establishing a 
macroscopic consideration of features at a higher level of abstraction. More 
specifically, the image presented for reduced dynamic-range processing preserves 
only an abstract sketch of the image edges, whereas the data given for reduced input-
dimension processing represents a projection of the input image and reflects the 
abstract structure of interest on a single direction, as illustrated in Figure 1c. 
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                     (a)                                                      (b)                                                  (c) 

Figure 1.  Typical images used in data-space reduction approaches.  
           (a) original image,  (b) reduced dynamic-range image, (c) reduced input-dimension data  

 
3 Reduced Dynamic-Range Processing 

  In our first approach related to data-space reduction, we utilize the edge structure 
extracted from the input lead image for classification purposes. In most cases, the 
derived edge structure is partially deformed or destroyed. Thus, the major task is to 
relate edge patterns so that we can recall a class assignment for each test pattern that 
may be presented for classification. We exploit the concept of associative memories 
(AMs) as stored patterns representing the desirable classes, and the Hamming 
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distance for quantifying the distance between the input pattern and each one of the 
stored memories (fundamental memories or examplar patterns)  [5]. For classification 
of input patterns we use the Hamming network, which is a maximum likelihood 
classifier used to determine the proximity of an input vector to several exemplar 
vectors or prototype patterns. An input pattern that partially resembles the stimulus of 
an association invokes the associated response pattern by means of the shortest 
Hamming distance.  The input pattern to the network is a binary edge pattern (as in 
Fig.1b) obtained from the grayscale input lead image  (as in Fig. 1(a) ) through 
segmentation and edge detection. The stored AM patterns reflect the edge structure of 
the “typical” edge image representing each class of lead displacements. Thus, the 
reduced dimensionality, binary edge image(as in Fig. 1 (b)) is fed to the Hamming 
network to determine pattern similarities and implement the desirable classifier.  

Since we exploit the concept of associative memory, the input pattern must have a 
structure similar to its closest one of fundamental memories (or examplar patterns) 
[5]. Each fundamental memory comprises the specific characteristics discriminating 
its class. Moreover, the fundamental memories used in lead displacement must assess 
the standard characteristics of the problem, such as same image size, uniform lead 
position, etc. To satisfy these requirements, we first select the memory for one 
displacement (0 pixels) and then construct the memories associated the other classes 
by shifting the outside edge structure with respect to the fixed structure of the lead. 
The basic fundamental memory at shift 0 is selected from a number of test images 
reflecting exactly this specific case through statistical analysis of the mean pattern in 
this class. Based on the design of the fundamental memories, we need to train the 
network so that it recovers the closest stored pattern in response to each test-input. An 
example of the desirable operation of the associative memory in the case of a test 
image with +3 pixels lead-shift is illustrated in Fig. 2. 
 

                                                                
(a)                                                            (b) 

Figure 2.  Associative memory operation. (a) testing image (b) output response 
 

The comparison between the input (edge) pattern and the stored memories 
requires the use of a distance measure, for example the Euclidean distance or the 
Hamming distance [5], for quantizing the output to the fundamental memories 
representing the desirable classes.  

                            
4. Reduced Input-Dimension Processing 

     In this approach we exploit the structure of the lead image profile (projection ) 
along one, the most descriptive direction vertical to the lead axis, for extracting 
meaningful features related to displacement measurements. The important component 
of this classification scheme is its feature extraction unit. We propose a complete 
feature extraction and classification approach that consists of three distinct modules. 
The first module receives the lead projection function at its input and utilizes a 
nonlinear filter based on a high-order neural network (HONN) [6] for feature 
extraction. The second module implements feature reduction and de-correlation of the 
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feature space by using the Karhunen-Lοeve transform (KLT). The third module 
comprised by the Bayes classifier serves as a classifier that assigns each feature vector 
to one of the predetermined classes.  

 HONNs are fully interconnected nets, containing high order connections of 
sigmoid functions in their neurons [6].  The HONN based feature extraction module 
receives as input a normalized projection function of the tested lead image and 
updates its weights by stable Lyapunov learning laws as to approximate that input 
function. Prior to entering the input function is linearly transformed in the range [0,1], 
as to avoid the appearance of destabilizing mechanisms caused by purely numeric 
issues, (i.e., large variations on the image projections data). Moreover, for uniformity 
reasons, the rising point of this function is shifted to the origin. Two displacement 
examples reflecting 3± pixels lead shift are presented in Figure 3.  
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Figure 3. Original lead images and projection functions for 3± pixels lead shift 

                         
A key issue in the design of the feature extraction system is the definition of the 

feature vector, which is based on relevant parameters employed in modeling the 
relation ( )y f x= , or on parameters of the approximation ( )ˆŷ f x= . In our 

approach, we take the feature vector ( )F  to be 

[ ] [ ]TN
T ewwwe 21== WF where [ ]TNwww 21=W  is 

the HONN weights vector and e is the approximation error.  
5. Results 

The reduced dynamic-range approach developed in Section 3 is now tested on 
actual images from four-sided QFP components. A total of 120 lead samples per class 
of the lead displacement is obtained resulting in totally 1560 samples for the 13 
classes. We consider the Hamming network trained and tested for 7 and 5 classes. The 
first case involves pixel displacements {-6,-4,-2,0,+2,+4,+6} whereas the second case 
considers classes { -6, -3, 0, +3, +6}. These two cases study the ability of the 
classifier to discriminate classes in the feature space separated by 2 and 3 pixels apart, 
respectively. Our approach is tested on 120 lead samples per type of the lead 
displacement resulting in totally 840 samples for the 7-class testing set and the 600 
samples for the 5-class testing set correspondingly. The testing process follows a jack-
knifing scheme [2], where all but one-sample feature vectors are used for training and 
the last one is used for testing. This process is repeated for all samples, leaving one 
out in every cycle. The overall classification rates from this jack-knifing process 
approximate the true classification probabilities of the classifier tested and the results 
are depicted on Tables 1 and 2, respectively.  
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                                   Table 1                                                                                                                        
 
 -6 -4 -2 0 2 4 6 
-6 85.00% 14.17% 0.83% 0.00% 0.00% 0.00% 0.00% 

-4 0.00% 84.17% 
15.83
% 0.00% 0.00% 0.00% 0.00% 

    
-2 0.00% 1.67% 

77.50
% 20.00% 0.00% 0.00% 0.83% 

 0 0.00% 0.00% 0.00% 92.50% 0.83% 6.67% 0.00% 
2 0.00% 0.00% 0.00% 5.00% 82.50% 12.50% 0.00% 

4 0.00% 0.00% 0.00% 0.83% 8.33% 82.50% 8.33% 
 6 0.00% 0.00% 0.00% 1.67% 3.33% 7.50% 88.33% 

 
                                Table2                                                                                                                                                            

The reduced input-dimension processing 
approach developed in Section 4 is now 
tested on actual images from four-sided 
QFP components. Similar to reduce 
dynamic-range approach, we consider the 
Bayesian distance classifier trained and 
tested for 7 and 5 classes. Again, a total of 
840 and 600 sample-leads are used for 

testing the classifier on seven and five classes, respectively. To approximate the 
unknown projection function the following HONN structure is used: 

  ( ) ( ) ( )
3 8 12

4 ( 4) ( 8)
1 4 2 3 4

1 5 9

( ) ( )T i i i
i i i

i i i

y x w s x w s x w s x w s x− −

= = =

= = + + +∑ ∑ ∑W S        

with  

1 35.703( 0.076)

0.9571( ) 0.2245
1 xs x

e− −= +
+

,        2 0.3598( 1.488)

0.3838( ) 0.2607
1 xs x

e− −= −
+

 

3 22.4438( 0.7927)

0.9625( ) 0.5625
1 xs x

e− −= +
+

,    4 51.468( 0.3287)

1.2906( ) 0.3572
1 xs x

e− −= −
+

  . 

The HONN weights are updated according to   
( )10.000534  , 1,2,3i

i iw w zs x i=− + =   , ( )4
4 4 20.000756w w zs x= − +  , 4=i  

( 4)
30.000825 , 5,6,7,8i

i iw w zs i−= − + = , ( 8)
40.000407  ,  , 9,10,11,12i

i iw w zs i−= − =  
                              Table 3                         

 The parameter α  that appears 
in the abovementioned HONN 
structure to approximation the 
unknown projection function is 
fixed to 8.0913α = . A genetic 
algorithm has been used to 
estimate off-line the optimal 
constant parameters of the non-
linear filter [7]. For the 

displacement classification task, the Bayesian classifier is implemented. The a priori 

 -6 -3 0 3 6 

-6 86.67% 10.00% 3.33% 0.00% 0.00% 

-3 0.00% 79.17% 20.00% 0.00% 0.83% 

0 0.00% 0.83% 95.00% 4.17% 0.00% 

3 0.83% 0.00% 5.00% 92.50% 1.67% 
6 0.00% 0.00% 1.67% 5.00% 93.33%

 -6 -4 -2 0 2 4 6 
-6 85.83% 12.14% 2.03% 0.00% 0.00% 0.00% 0.00% 

-4 11.25% 67.83% 16.13% 3.07% 1.23% 0.00% 0.49% 

-2 0.26% 8.72% 80.17% 10.21% 0.64% 0.00% 0.00% 

 0 0.00% 11.31% 0.89% 65.64% 18.92% 3.08% 0.16% 

 2 1.12% 0.00% 0.00% 16.04% 73.17% 4.60% 5.07%   

4 0.00% 0.00% 0.00% 3.03% 4.26% 90.83% 1.88% 
6 1.54% 0.00% 0.78% 2.01% 1.78% 1.49% 92.4% 
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class probabilities are set to 1/7 and 1/5 for the seven and five-class assignments, 
respectively. The KL transform is used to decorrelate the feature vectors by taking the 
projections of the N-dimensional HONN features to their K most important 
directions. The classification probabilities resulting from the jack-knife process are 
illustrated in Tables 3 and 4 respectively.                            
From the above classification results we conclude that as expected the classification 
results for the 5-classes assignment are more accurate than these for the 7-classes 
problem. Notice that the complementary information processed by the two algorithms    
can be efficiently merged within a Bayesian information fusion scheme [2] to 
drastically improve the classification probabilities for all classes under consideration. 
Overall we may conclude that high abstraction features used in approximate 
processing are generally less descriptive than pixel-based features for classification 
purposes. With respect, however to computational complexity, the approximate 
processing can yield appreciable reduction at the cost of slightly inferior results. 
                       Table 4  

 
6. Conclusion 
We have considered two approaches to 
overcome the computational complexity of 
classical machine vision quality inspection of 
SMDs on a PCB. The first employs associative 
memories to implement the reduced 
information content in image intensity levels. 

The idea is to compare the edge structure of a lead image with that of stored fundamental 
patterns. The second scheme compresses the data space by considering only an image 
projection function of the data. A non-linear filter based on high order neural networks is used 
to encode the characteristics of each projection function. Both methodologies are tested on real 
industrial PCB images. The quality of inspection slightly deteriorates while the computational 
time is significantly reduced, when compared to classical visual inspection techniques.   
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 -6 -3 0 3 6 

-6 88.30% 7.67% 4.03% 0.00% 0.00% 

-3 3.05% 91.60% 5.35% 0.00% 0.00% 

0 8.65% 0.00% 82.40% 6.41% 2.54% 

3 0.00% 0.00% 3.42% 90.50% 6.08% 
6 0.00% 0.73% 4.82% 3.07% 91.38%
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