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Abstract. In this paper, a radical-basis-function neural network(RBFNN) 
with efficient linear learning algorithm is presented for the identification 
on target profiles of Ultra Wideband(UWB) radar. This linear RBFNN has 
both good localization approximation and linear computation complexity 
with the number of dimension and number of inputs. Its performance is 
comparable with support vector machine (SVM) for tasks of pattern 
recognition with a rapider speed. We applied it to the identification of 
target profile in UWB radar, which needs excessively fast processing. The 
experimental results are achieved including higher recognition rate and 
shorter consumed time, which is superior to its counterparts. 

1 Introduction 

As a popular model in the community of artificial neural networks, radical-basis-
function neural network (RBFNN) has attracted intense researching interests [1]. It is 
characterized of universal approximations, compact topology and fast learning, so it 
has found many applications in diverse engineering fields [2]. The basic architecture 
of RBFNN is a three-layer network. Each layer is fully connected to the following one 
and the hidden layer is composed of a number of nodes with radial activation 
functions called radial basis functions. The input layer is simply a fan-out layer. The 
second (or hidden layer) can fulfill a non-linear mapping from the input space into a 
(usually) higher dimensional space in which the patterns become linearly separable. 
The final layer is only a linear weighted output. Up to now, many learning algorithms 
for RBFNN have been proposed. However, they are commonly of high computation 
complexity that is related with the number of input samples and hidden neurons. For 
example, the complexity of gradient leaning algorithm approaches O(n3) (where n is 
the number of training samples) due to the computation of an inverse matrix. Orr 
proposed a number of approaches to reduce the hidden units [3]. Beatson proposed a 
O(nlogn) learning algorithm using polyharmonic spline functions [4], which make an 
improvement of the classical RBFNN. To achieve the goal of a fast processing in the 
identification on target profiles of Ultra Wideband(UWB) radar, a linear RBFNN 
(LRBFNN) with linear learning is presented in this paper. It is characteristic of a 
linear computation complexity in time and space with the dimension and number of 
the input samples. So it is of rapid processing and good performance in the target 
identification of UWB radar system. The comparison results with other traditional 
methods also prove its superiority. 



2 A Linear RBFNN with efficient learning algorithm  

2.1 The structure and learning of RBFNN 

The architecture of a L-M-N RBFNN is shown in figure 1, whose input layer, hidden 
layer and output layer have L, M and N neurons respectively. Denote

i ir C= Χ− as 
the distance of input X=[x1, x2,…, xL] to the i-th center Ci=[c i1, ci2,…, ciL], where ||.|| 
indicates the Euclidean norm on the input space. Usually the Gaussian function Φ is 
preferred among all possible radial basis functions due to the fact that it is factorizable. 
So the output of the hidden layer is Z = [z1,z2,..zM]T with each component zi: 
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where σi is the radius of the i-th Gaussian function in the hidden layer, and cij is the 
j-th component of the i-th center. Hence the input vectors are mapped to higher 
dimension by the radical basis function. A linear layer then follows and we get the 
output Y=[y1, y2,…, yN], where with each component  
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where yi is the output of i-th neuron, wij is the connect weight of the j-th hidden 
neuron to the i-th output neuron and wi0 is the threshold of the i-th output neuron.     
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    Fig. 1: The structure of a RBFNN 

As we have described above, R=[r1,r2,..rM] is the distance between the input and the 
center measured by the Euclidean norm. Therefore, the network receives an input 
pattern X and the centers are known, the distance from the centers can be measured. 
Furthermore, this distance measure is non-linear, so that a pattern can give a value 
close to 1 if it is in an area that is close to a center, however beyond this area, the 
value drops dramatically.  σ  defines the width or radius of Gaussian function and is 
something that has to be determined cautiously. Because a linear combination of 
spherical Gaussian functions can approximate any function with arbitrarily small error, 
the training task is reduced to searching for appropriate centers, radius and connected 
weights for the network. To determine the parameters of the Gaussian functions, 
supervised and unsupervised learning algorithm can both be employed. Gradient 



descent technique is a very popular supervised learning algorithm, and there are also 
some unsupervised methods such as K-means algorithm, Kohonen algorithm and P-
nearest neighbour algorithm. Kohonen algorithm and K-means algorithm are both 
clustering methods used to determine the centers. P-nearest neighbour algorithm is 
employed to determine the radius of the Gaussian function. Having trained the hidden 
layer, the next step is to train the output layer, that is, find the weights between hidden 
and output layer. Gradient-based methods are usually used such as least mean squares 
algorithm.  

2.2 Leaning algorithm based on Kernel Smoothing 

In this section, we discuss a linear algorithm based on the classical kernel smoothing 
method for RBFNN[5], which has linear computation complexity with the number and 
dimension of training samples. The basic idea of kernel smoothing algorithm is to 
place a Gaussian function at each sample. Denote the distance between two samples 
in RN as hδ=(h1δ,h2δ….,hNδ), where δ is a very small real number and h1, …hN are all 
integers. Suppose one sample xh has k nearest neighbours xh

1, xh
2,.., xh

k. When the 
samples are very dense, that is, δ approaches 0, the function values of the k 
neighbours xh

1, xh
2,.., xh

k are approximately equal to that of xh, that is,  
f(xh

1)≈ f (xh
2) ≈…≈f(xh

k) ≈f(xh)  
Lay a Gaussian function at each sample, then the radius of Gaussian functions and the 
corresponding weights in output layer are approximately equal: wh

1≈wh
2…≈wh

k≈wh, 
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q(x) proves to be bounded by 2.50662827±1.35×10-8 if σi=δ [5], then  we get: 
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If a sample is located at xi, the weights of its corresponding Gaussian function is 
approximately ( ) /(2.5066)i N

iw f x= , which is of linear learning complexity. Such 
result is under an assumption of σi=δ, and we can describe it in a more generalized 
way:         
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smoothing function is actually a weighted average of the sampled function values.  
Therefore, selecting a larger value β implies that the smoothing effect will be more 
significant. According to our experimental results, the value of β essentially has no 
effect on the result, as long as it is set to a value within [0.6,2]. Our suggestion is set 

1β = . Then the equation of the network can be written as:         
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where n is the number of training samples and N is the dimension of the input space. 
Then we can get the time complexity of constructing a RBFNN－O(Nn), and the time 
complexity for predicting the function values of m test samples is O(Nm).  

2.3 Discussion of the linear RBFNN  

Such a learning algorithm is very efficient because it has time and space complexity 
linear with the dimension and number of the input samples. The algorithm has been 
proved to exhibit good results in pattern recognition and regression, at least delivering 
the same level of accuracy as the available efficient tools, such as support vector 
machine (SVM) [5].  

Although the proposed algorithm has comparable performance with existing 
algorithms, the discussions so far are based on the assumption that the sampling 
density is sufficiently high, i.e, in the case of δ approaching 0, which may not hold for 
some practical data sets. So firstly if the assumption of uniform sampling does not 
hold, then some sort of interpolation can be conducted to obtain the approximate 
function values at the crosses of the grid formed by δN. Secondly, since the above 
algorithm is distance-based, removal of redundant training samples will lower the 
complexity of RBFNN when the input dimension is very high. So it is interesting to 
develop some sort of data reduction mechanisms to reduce the space complexity of 
the RBFNN constructed.  Thirdly, for the existence of noises in practical cases, some 
measures should be considered to handle random noises and the compensation of 
smoothing effect. Some further work which aim to solve the mentioned problems are 
being done by our group.  

3 Target Identification for UWB radar using Linear RBFNN 

Ultra Wideband (UWB) technology has been successfully applied in wireless 
communication and radar system in recent years. It can fulfill the transmission and 
reception of high-peak power using extremely short impulses [6]. For example, the 
UWB radar system developed at the Radar Systems Lab (University of Kansas) is a 
system with a bandwidth of 1.775 GHz and a pulse duration of less than 1 ns. Using 
ultra-wideband (UWB) radar signals appears to be the most promising approach to 
building radar systems with new and better capabilities and direct applications to civil 
uses and environmental monitoring. UWB signals can provide high range resolution 
for better imaging than available narrowband synthetic-aperture radar (SAR) systems. 

Recently the identification on target profile of UWB radar is a challenging subject 
in radar signal processing, which anticipate a higher recognition rate for very similar 
and small targets. The targets can be recognized using one-dimensional or two-
dimensional image. Figure 2 shows the 2-D image of three kinds of planes－B-1, MI-
8 and MI-6. A one-dimensional image is a vector sum of all echoes of corresponding 
two-dimensional image on perpendicular direction. Commonly speaking, a two-
dimensional image is much easier to be recognized, but in practical it is difficult to 
acquire it. It is well known that a one-dimensional image (or the range profile of radar) 



can represent a spatial distribution of microwave reflectivity, which is sufficient to 
characterize the targets [7][8]. So in actual radar recognition system we only use one-
dimensional image. RBFNN has got successful application in radar target 
identification in recent years. Unlike the traditional radar systems, UWB radar needs 
excessively rapid processing for its very short impulses, which brings about more 
samples in a defined time duration or higher dimensional radar image.  However, the 
training complexity in time and space of most available RBFNN increase 
exponentially with the increased dimension and number of input samples. So for 
target identification of UWB radar, where the images of targets are of high dimension, 
a real processing can’t be accomplished. However the linear RBFNN has a linear 
relation with the dimension and number of the input space, so it can achieve a fast 
processing speed required by UWB radar identification.  

 
                            Fig. 2: The 2-D image of B-1, MI-8 and MI-6 

4 Simulation Results 

We used the linear RBFNN above to recognize the one-dimensional image of three-
class planes whose models are B-1, MI-8 and MI-6 respectively (their 2-d images are 
shown in figure 2). Our data are obtained in a microwave darkroom with imaging 
angle from 0 to 179 degree. Totally we get 322, 311 and 451 images of three classes 
of plane respectively. Here the input space of one-dimensional image recognition is of 
100 dimensions. In the model, we let 1β=  and δ=0.01. To get better learning and 
generalization of the network, we normalized the data to [0,1] before feeding them 
into the network. 100 samples are taken from each class to form training samples. The 
totally 1084 images are taken as the test samples. We compare our method with a 
generalized RBFNN (GRBFNN) that adaptively adjusts all the parameters using a 
supervised gradient descent algorithm for all the parameters of the network. At the 
same time, the Gaussian SVM algorithm－a very good classification method is also 
considered to give its result for this problem. Adjust the parameters in three methods 
to make the training error small enough (with a recognition rate>95%). For the three 
methods, GRBFNN expends a long training time and finally get an unstable result; 
the recognition rate of SVM is higher with shorter training time than GRBFNN; while 
our method consumes least time and obtains a relatively good recognition rate 
comparable to SVM. The results of recognition rates and the consumed time of three 
methods are shown in table 1. From it we can see that our network can recognize 
these planes with high recognition rate. Moreover, it is characteristic of a rapid 



learning speed, which is preferred in practical processing.  
Identification Rates  MODEL 

GRBFNN SVM LRBFNN 
B-1 

MI-8 
MI-6 

Time(s) 

96.3% 
93.2% 
94.6% 

9.3 

98.0% 
95.5% 
96.1% 

5.0 

97.8% 
95.6% 
96.9% 

2.2 
Table 1: Identification results of three planes 

5 Conclusion 
In this paper, a linear RBFNN with an efficient learning algorithm is applied to the 
identification on target profiles of Ultra Wideband radar. The linear RBFNN is based 
on the classical kernel smoothing method and it has the linear complexity in time and 
space with the dimension and number of input data. Accordingly it is characteristic of 
fast learning and relative high accuracy in the UWB identification system, which is 
demonstrated through the comparison results with other traditional methods.  
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