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Abstract. In this paper, input selection is performed using two different 
approaches. The first approach is based on the Gamma test. This test estimates the 
mean square error (MSE) that can be achieved without overfitting. The best set of 
inputs is the one that minimises the result of the Gamma test. The second method 
estimates the Mutual Information between a set of inputs and the output. The best 
set of inputs is the one that maximises the Mutual Information. Both methods are 
applied for the selection of the inputs for function approximation and time series 
prediction problems. 

1 Introduction 

Input selection is one of the most important issues in machine learning especially 
when the number of observations is relatively small comparing to the number of 
features. Mathematically speaking, a finite set of inputs is sufficient in order to extract 
an accurate model out of the infinite observations [1]. In practice, there is no data set 
with infinite number of data points and furthermore, the necessary size of the data set 
increases dramatically with the number of observations (curse of dimensionality). To 
circumvent this, one should select the best features or inputs in the sense that they 
contain the necessary information. Then it would be possible to capture and 
reconstruct the underlying regularity or relationship between input-output data pairs. 
With respect to this, some approaches have been proposed, such as branch and bound 
and Bayesian selection [2-6].  

Some of them deal with the feature selection problem as a generalization error 
estimation problem. In this methodology, the set of features that minimize the 
generalization error are selected using Leave-one-out, Bootstrap or other resampling 
technique. These approaches are very time consuming and may take several weeks. 
However, there are other approaches [7-12] which select a priori features based only 
on the dataset and so the computational cost would be less than the cost of the model 
dependent cases. Model independent approaches select a set of features by optimizing 
a criterion over different combinations of inputs. The criteria computes the 
dependences between each combination of input features and the corresponding 
output using predictability, correlation, mutual information or other statistics.   
 Various alternatives for input selection exist. Then, some comparative studies 
might be helpful as a reference for practical experiments. In this paper, we focus on 
two promising criteria: a new method called Gamma Test, and, a more conventional 
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method, the Mutual Information criterion.  The paper is organized as follows: In 
section 2 and 3 Gamma Test and Mutual Information are introduced. In section 4, LS-
SVM is defined in order to compare the inputs selected by each method. In section 5 
we present two experimental results (a toy example and a real dataset). Finally, in 
section 6, conclusions are given. 

2 Gamma Test 

The Gamma Test (GT) is a technique for estimating the variance of the noise, or the 
mean square error (MSE), that can be achieved without overfitting [12]. GT is useful 
for evaluating the nonlinear correlation between two random variables, namely, input 
and output pairs. It is a generalization of the approach proposed in [12], which is 
basically based on the fact that the conditional expectation (1) approaches variance of 
the noise when the distance between the data points tends to zero [13]. 
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The GT has been applied to various problems in Control Theory, feature 
selection and secure communication [12]. The experiments show that GT is efficient 
and thus can be applied to real world problems. A mathematical proof of GT can be 
found in [13] and it is based on a generalization of Chybechov inequality and the 
property of k-nearest neighbor structures.  In [13], three conditions are necessary:  
- the first and second partial derivatives of the underlying function exist; 
- the first to the fourth moments of the noise distribution exist; 
- the noise is independent to the corresponding points. 
 Using these three conditions, the variance of the noise is given by the bias term, 
called Γ, of the regression between γ(k) and δ(k), where 1≤ k ≤ p. 
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With xN[i,k] the kth nearest neighbour of xi and yN[i,k] the corresponding output. 
According to [12], p = 10 is used in experiments presented in section 5. 

3 Mutual Information 

The mutual information (MI) of two variables, let say X and Y, is the amount of 
information obtained from X in the presence of Y, and vice versa. MI can be used for 
evaluating the dependencies between random variables, and has been applied to  
Feature Selection and Blind Source Separation [14].  
Let’s consider two random variables; the MI between them would be, 
  (4) ),()()(),( YXHYHXHYXI −+=
where H(.) computes the Shannon’s entropy. Equation (4) leads to integrations and 
some approaches have been proposed to evaluate them numerically [15]. In this paper, 



a recent estimator based on k-nearest neighbours statistics is used [16]. The novelty of 
this approach consists in its ability to estimate the MI between two variables of any 
dimensional spaces. The basic idea is to estimate H(.) from the average distance to the 
k-nearest neighbours (over all xi). MI is derived from equation (4) and is estimated as 
following: 
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where N is the size of data set,  k is the number of nearest neighbours and ψ(x) is the 
digamma function 
  (6) dxxdxk /)(1)()( Γ−−Γ=ψ
and ψ(1) ≈ −0.5772156. 
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nx(i), ny(i) are the number of points in the region ||xi − xj|| ≤εx(i)/2 and ||yi − yj|| ≤ εy(i)/2, 
ε(i)/2 is the distance from zi to its k-nearest neighbors, and εx(i)/2, εy(i)/2 the 
projections of ε(i)/2 [16]. k = 6 is used in the experiments. 

4 Least Squares Support Vector Machines 

LS-SVM are regularized supervised approximators. Comparing to SVM, it does not 
have local minima and the optimisation process is simpler. A short summary of the 
LS-SVM model is given here; more details are given in [17]. 
 The LS-SVM model [17, 18] is defined in its primal weight space by 
 ( ) by T += xϕωˆ  (8) 
where ϕ(x) is a function which maps the input space into a higher dimensional feature 
space, x is the N-dimensional vector of inputs and xi, and ω and b are the parameters 
of the model. In Least Squares Support Vector Machines for function estimation, the 
following optimization problem is formulated: 
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subject to the equality constraints 

 ( ) Nieby iii T ,,1, K=++= xϕω . (10) 

 In equation (10), the superscript I refers to the number of the sample.  The 
parameter set θ consists of vector ω and scalar b.  Solving this optimization problem 
in dual space leads to finding the αi and b coefficients in the following solution: 
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 Function Κ(x,xi) is the kernel defined as the dot product between the ϕ(x)T and 
ϕ(x) mappings. The meta-parameters of the LS-SVM model are the width of the 
Gaussian kernels (taken to be identical for all kernels) and the γ regularization factor.  



LS-SVM can be viewed as a form of parametric ridge regression in the primal space. 
The training method for the estimation of ω and b parameters can be found in [17]. 

5 Experimental Results 

The two methods presented in the previous sections are used to select the best input 
variables (from a set of possible variables) by evaluating the MI or Γ value. All the 
combinations of input features, e.g. 2d-1, are tested (d is the number of input 
variables). Then, the one that gives the maximal MI and the one that give the minimal 
Γ, are selected. Two experiments on a small datasets have been performed in order to 
show the level of efficiency of GT and MI for the problem of input selection. The first 
one is a toy example for which the correct inputs are known. The second used 
example is a benchmark in the field of time series prediction: the Poland Electricity 
Dataset [19]. 

5.1 Toy Examples 

In this experiment, we investigate the robustness of Mutual Information and Gamma 
Test for selecting the correct inputs against additional noises. First we use the 
following equation for generating a toy data set: 
 ε∗+++= aXXXXY 10721 sin  (12) 
with ε a uniform noise in [-1, 1], X is a uniform distributed 10-dimensional variable, 
with and a the weighting coefficient of the noise. The number of X observations is 
1000 (the size of the dataset).  The robustness of each approach is tested by increasing 
the value of parameter a in order to detect when it fails in the selection of the correct 
inputs. The results are illustrated in Fig. 1 for both approaches. 
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Fig. 1: Toy Example: number of correct selection for GT (solid line), number of 

correct selection for MI (dotted line).  

 In this example, GT is less robust than MI in selecting the right inputs in 
presence of large amount of noise. MI starts to fail when the variance of the noise 
becomes higher than 0.2940 and GT starts to fail when the variance of noise becomes 
higher than 0.1933. 



5.2 Poland Electricity Data Set 

In order to predict the next value of a Time Series, an auto-regressive model is used: 
 ))(),...,2(),1(()( ntytytyfty −−−= . (13) 
 The input variables in the right-hand part of (13) form the regressor. In our 
experiment, n is equal to 8.  The methodology presented in section 5 is used to select 
the best regressor: 2d-1 regressors are tested.  The selected regressor based on GT is 
{y(t-1), y(t-2), y(t-5), y(t-7), y(t-8)} and the one based on MI is {y(t-1), y(t-2), y(t-6)}. 
 Least Square Support Vector Machine (LS-SVM) is used for comparing the 
regressor selection performances. For each experiment, two thirds of the whole data 
set has been used for training, and the remaining data points for testing. Leave-one-
out procedure for model selection purposes has been applied. The parameters γ and σ 
for the GT based regressors are 2164.4 and 0.584; and for the MI based regressors are: 
10 and 0.1 correspondingly. The mean absolute error (MAE) on the test set is 0.02464 
in case of MI based regressor and 0.01944 in case of GT. The corresponding mean 
square error (MSE) is 0.00163 in MI case and 0.00103 in GT case. For this 
experiment, the suggested regressor from the GT is more accurate than the MI one. It 
indicates that the predictions for GT based regressor are closer to the optimal input set. 
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Fig. 2: Test set:  true value (thick solid line), prediction based on GT (thin solid 

line and prediction based on MI (dotted line). 

6 Conclusions 

In this paper, we presented the efficiency of Gamma Test for feature selection 
problem on a real dataset and on a toy example. In the literature, it has been 
demonstrated that MI is a good approach for input selection problems [20] and it has 
been used as a reference method in this paper.  
 Based on the experiments, the prediction results obtained with GT are more 
accurate than the one obtained by MI. But MI is more robust than GT in presence of 
noises with large variances. The prediction results on the test set show that the input 
selection based on GT leads to more accurate results than ones based on MI.  
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