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Abstract. ANOVA decomposition is used as the basis for the develop-
ment of a new wrapper feature subset selection method, in which functional
networks are used as the induction algorithm. The performance of the pro-
posed method was tested against several artificial and real data sets. The
results obtained are comparable, and even better, in some cases, to those
accomplished by other well-known methods, being the proposed algorithm
faster.

1 Introduction

Feature selection consists on selecting a subset of relevant features from a set,
which remaining features will be ignored. Feature selection may not only help
improve performance accuracy, but also results in better understanding and
interpretation of the data. Given a set of n features and M samples x = {xij ; i =
1, . . . , M ; j = 1, . . . , n}, feature subset selection methods find a subset xs =
{xi1, . . . , xis}, with s < n, that optimizes an objective function.

Feature subset selection requires a search strategy to select candidate subsets
and an objective function to evaluate these candidates. Two different general
approaches are commonly considered:

• Filter algorithms, in which case the selection method is used as a prepro-
cessing that does not attempt to optimize directly the predictor (machine
learning method) performance.

• Wrapper algorithms, in which the selection method optimizes directly the
predictor performance.

In this paper, a new wrapper subset selection algorithm based on ANOVA
decomposition is presented. Functional networks are used as the induction al-
gorithm. The method has been tested against several benchmark and real data
sets, and their results are presented and compared with those obtained by other
filter and wrapper algorithms.
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2 Materials and Methods

2.1 The Sobol ANOVA Decomposition

According to Sobol, any square integrable function f(x1, · · · , xn) defined on the
unit hypercube [0, 1]n can be written as

y = f(x1, · · · , xn) = f0 +
2n−1∑
ν=1

fν(xν), (1)

where {xν |ν = 1, 2, · · · , 2n − 1} is the set of all possible subsets of the set
{x1, x2, · · · , xn}. In the case ν = 0, corresponding to the empty set, the func-
tion fν(xν) has no arguments, and it is assumed to be the constant f0. The
decomposition (1) is called ANOVA iff

1∫

0

fν(xν)dxi = 0; ∀xj ∈ xν i �= j ∀ν.

Then, the functions corresponding to the different summands are unique and
orthogonal [1], i.e.:

1∫

0

1∫

0

· · ·
1∫

0

fν1(xν1)fν2(xν2)dxν1dxν2 = 0; ∀ν1 �= ν2.

Note that, since the above decomposition includes terms with all possible kinds
of interactions among variables x1, x2, · · · , xn, it allows determining these inter-
actions.

The main advantage of this decomposition is that there are closed or ex-
plicit formulas to obtain the different summands or components of f(x1, · · · , xn).
These expressions were given by Sobol in [1], allowing that the f(x1, · · · , xn)
function can always be written as the sum of the 2n orthogonal summands:

f(x1, · · · , xn) = f0 +
n∑

i=1

fi(xi)+
n−1∑
i=1

n∑
i<j

fij(xi, xj)+ · · ·+f12···n(x1, x2, · · · , xn).

Since if f(x1, · · · , xn) is square integrable, then all fν(xν); ν = 1, 2, · · · , 2n−
1 also are square integrable, squaring f(x1, · · · , xn) and integrating over (0, 1)n

one gets
1∫

0

1∫

0

· · ·
1∫

0

f2(x1, · · · , xn)dx1dx2 · · · dxn − f2
0 =

2n−1∑
ν=1

1∫

0

f2
ν (xν)dxν ,

and calling D to the left part of this equation and Dν to each summand in the
right part, it results

D =
2n−1∑
ν=1

Dν .



If (x1, x2, · · · , xn) is a uniform random variable in the unit hypercube, then
the constant D is its variance. With this, the following set of global sensitivity
indices, adding up to one, can be defined

Sν =
Dν

D
; ν = 1, 2, 3, · · · , 2n − 1.

Therefore, the variance of the initial function can be obtained by summing
up the variance of the components, and this allows assigning global sensitivity
indices, adding to one, to the different functional components.

2.2 A basic description of functional networks

Functional networks are a generalization of neural networks that combine both
knowledge about the structure of the problem, to determine the architecture of
the network, and data, to estimate the unknown functional neurons. A functional
network consists of: a) several layers of storing units; b) one or several layers of
processing units that evaluate a set of input values and delivers a set of output
values and c) a set of directed links, that indicate only the direction of the
information flow and do not contain parameters.

In functional networks, the activation functions are unknown functions from
a given family, i.e., polynomial, trigonometric, etc., to be estimated during the
learning process. In addition, functional networks allow connecting neuron out-
puts, forcing them to be coincident. For a more detailed study of functional
networks consult [2].

3 The proposed wrapper feature subset selection method

A method for learning the functional components of f(x1, · · · , xn) from data and
calculating global sensitivity indices that will allow us to select the appropriate
features is presented.

The idea consists of approximating each functional component fν(xν) in
(1), using some set {h∗

ν1(xν), h∗
ν2(xν), · · · , h∗

νk∗
ν
(xν)} of simple basic functions

(polynomial, Fourier series, etc.), i.e.:

fν(xν) ≈
k∗

ν∑
j=1

c∗νjh
∗
νj(xν), (2)

where c∗νj are real constants. Then, an orthogonalization and orthonormalization
processes are carried out so that the functional components become:

fν(xν) ≈
kν∑

j=1

cνjpνj(xν).

Notice that not only the functions h∗ have changed but also the set of real
constants, cνj . These modified parameters, cνj , will be estimated by solving



a minimization problem and they will allow to calculate the global sensitivity
indices. These indices will indicate which variables or relations between variables
are relevant. The different steps of the method are briefly described in the
following subsections.

3.1 Sobol ANOVA decomposition algorithm

Input. A data set with M samples and n input variables {x1, x2, . . . , xn} and
one output variable y.
Output. One approximation to the Sobol ANOVA decomposition of function
f(x1, x2, · · · , xn) and the global sensitivity indices.
Step 1: Select a set of approximating functions.
Each functional component fν(xν) in (1) is estimated by (2) where c∗νj are real
constants and h∗

νj are simple basic functions that are elected in this step of the
algorithm.

Functional networks can be used for an adequate selection of families of func-
tions. Several networks can be trained using different families of functions; then,
the family with a better performance results is elected to be the h∗

νj functions.
Step 2: Impose the orthogonality constraint for the functional com-
ponents.

A new set of approximating functions, {hν1(xν), · · · , hνkν
(xν)}, is obtained

when the following orthogonality constraint is imposed

1∫

0

k∗
ν∑

j=1

c∗νjh
∗
νj(xν)dxir

= 0; ∀xik
∈ xν ;∀ν.

Step 3: Orthonormalize the basic functions of each functional compo-
nents.

A Gram matrix G with elements gij defined by:

gij =

1∫

0

1∫

0

· · ·
1∫

0

hνi
(xνi

)hνj
(xνj

)dx

is calculated. Then, the eigenvectors of matrix G are the columns of a matrix
Q which is used for calculating the new basic functions as:

(p∗ν1(xν), p∗ν2(xν), · · · , p∗νkν
(xν)) = Q (hν1(xν), hν2(xν), · · · , hνkν

(xν)).

Finally, these functions p∗νkν
are normalized obtaining the functions pνkν

.
Step 4: Learn the coefficients by least squares.

The coefficients cνj ; ν = 1, 2, · · · , 2n−1; j = 1, 2, · · · , kν are obtained by solv-
ing the following minimization problem:

Minimize
f0,cνj ;ν=1,··· ,2n−1

j=1,··· ,kν

Q =
m∑

k=1

ε2k =
m∑

k=1


yk − f0 −

2n−1∑
ν=1

kν∑
j=1

cνjpνj(xνk)




2

.



Step 5: Obtain the global sensitivity indices.
Since the resulting basic functions have already been orthonormalized, the

global sensitivity indices (importance factors) are the squares of the coefficients,
i.e.:

Sν =
kν∑

j=1

c2
νj ; ν = 1, 2, · · · , 2n − 1.

Step 6: Return solution.
The list of coefficients cνj ; ν = 1, 2, · · · , 2n − 1; j = 1, 2, · · · , kν , the set of

basic functions {pν1(xν), pν2(xν), · · · , pνkν
(xν)|ν = 1, 2, · · · , 2n}, and the sensi-

tivity indices {Sν |ν = 1, 2, · · · , 2n} are returned.

3.2 Selecting the proper variables

Once the ANOVA decomposition algorithm has been applied, a global sensitivity
index is obtained for each variable and each combination of variables considered.
Then, only the variables with a high index by its own or included in a combina-
tion of variables with a high index are considered. Therefore, a minimum limit
has to be determined, in such a way that those variables above this minimum
are considered relevant and those below are discarded. This limit depends on
the problem being solved and it has to be defined for each one in terms of the
global sensitivity indices obtained.

Besides the indices, an approximation for the function to be estimated is also
obtained. This approximation may have a very good performance, in terms of
accuracy. In this case, the method is used as a pure wrapper algorithm. If the
performance obtained could be improved, the previous algorithm from step 4 on
or the functional networks used in the step 1 of it can be employed as induction
algorithm considering only the relevant variables and its combinations.

4 Results

The proposed method has been applied to several datasets used in previous
studies [3]. All datasets except for Corral, introduced in [4], were obtained from
the Irvine repository [5]. For all the cases, the set of basic functions chosen was
the polynomial family considering only functions with degree two. Therefore,
equation (1) is simplified and the first three steps of the methodology need to
be applied only once.

The results obtained are shown in Table 1, datasets above the horizontal
line are artificial and those below are real. For the artificial data, training and
testing samples were selected such as it was done in [3]. Similarly, a ten-fold
cross-validation was carried out for the real datasets. In these cases, the results
shown are the mean and standard deviation of the ten test accuracies obtained,
moreover, it has to be considered that different global sensitivity indexes are
obtained for each fold, so a variable that is upper the limit in a fold can be
below it in another fold. Therefore, all the variables that were included in at
least two folds were considered. In [3], the authors compared the performance of



different wrapper and filter approaches. From them, in our table we have selected
those with the best average results in real and artificial data sets. The results are
comparable to those of the other methods. Although a comparison in CPU time
consumption is not directly possible because of the different processors used, an
extrapolation of the processing speed of both makes our method 10 times faster
than the best of the others. As an example, each fold of the breast-cancer takes
0.15s in a Pentium 4 (260GHz).

Dataset
B.A.

ANOVA+FN ID3-RLF ID3-BFS
(Features) Sel Acc Sel Acc Sel Acc

Corral (6) 56.25 4 100 5 100 4 100
Monk1 (7) 50.00 3 100 3 97.22 3 97.22
Monk2 (7) 67.13 4 67.59 4 63.90 3 64.35
Monk3 (7) 52.78 2 97.22 3 100 2 97.22

ANOVA+FN NB-RLF NB-BFS
Pima (8) 65.52 2 76.82 ± 4.16 1.2 64.57 ± 2.4 4.4 76.03 ± 1.6
Breast (7) 65.10 5 95.42 ± 3.07 5.7 95.14 ± 1.3 5.9 96.00 ± 0.6

Table 1: A comparison of the methodology proposed with the ID3 algorithm
for the artificial data and Naive-Bayes(NB) for the real data. Both methods are
applied with the Relived-F filter (RLF) and with the wrapper using backward
best-first search with compound operators (BFS). B.A. stands for Baseline Ac-
curacy and it is defined as the accuracy when predicting the majority class. Acc
stands for test accuracy and Sel for the mean number of selected features.

5 Conclusions

A new method for feature subset selection based on ANOVA decomposition and
functional networks has been developed and tested using several data sets. The
results achieved show the adequacy of the approach, although better results
could be obtained selecting appropriate families for each data set. The method
has a complexity exponential to the number of initial features, but it has the
advantage of given an interpretation in terms of variance to the selected subset
that most of the wrapper methods can not do.

References

[1] I. M. Sobol. Global sensitivity indices for nonlinear mathematical models and their Monte
Carlo estimates. Mathematics and Computers in Simulation, 55:271–280, 2001.

[2] E. Castillo, A. Cobo, J.M. Gutiérrez, and E. Pruneda. Functional Networks with Applica-
tions. Kluwer Academic Publishers, 1998.

[3] R. Kohavi and G.H. John. Wrappers for feature subset selection. Artificial Intelligence
journal, special issue on relevance, 97(1-2):273–324, 1997.

[4] G. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection problem. In
Machine Learning: Proceedings of the Eleventh International Conference, pages 121–129,
1994.

[5] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998. http:

//www.ics.uci.edu/~mlearn/MLRepository.html.


