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Abstract. Generalized Relevance Learning Vector Quantization (GRLVQ)
is combined with correlation-based similarity measures. These are derived
from the Pearson correlation coefficient in order to replace the adaptive
squared Euclidean distance which is typically used for GRLVQ. Patterns
can thus be used without further preprocessing and compared in a man-
ner invariant to data shifting and scaling transforms. High accuracies are
demonstrated for a reference experiment of handwritten character recog-
nition and good discrimination ability is shown for the detection of sys-
tematic differences between gene expression experiments.
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1 Introduction

Pattern classification is the key technology for solving tasks in diagnostics, au-
tomation, information fusion, and forecasting. Backbones of pattern classifi-
cation are the underlying similarity measures: they define how data items are
compared, and they control the grouping of data. Thus, depending on the notion
of similarity, a data set can be viewed and processed from different perspectives.
In learning vector quantization (LVQ) a data vector can be compared with a
prototype vector for example according to the Euclidean distance or the Man-
hattan block distance, the former measuring diagonally across the vector space,
the latter summing up distances along each dimension axis. Thereby, the block
distance better maintains the independence of the considered attributes’ physical
meanings, while the Euclidean metric allows shortcuts the attribute space. In
any case, the specific structure of the data space can and should be accounted for
by selecting the appropriate metric. Alternatively, metrics evolve their specificity
automatically during training within a certain range, as proposed by Kaski [5]
for extensions of the self-organizing map (SOM) or by Hammer and Villmann [4]
for LVQ-based learning. In biological sciences also the functional aspect of col-
lected data plays an important role: the organization of spatio-temporal patterns
for gene expression levels might be more revealing by comparing shapes of the
expression profiles rather than finding spatially close expression vectors. A com-
monly used measure to meet this purpose is given by the Pearson correlation
which describes the degree of linear dependence between two data sets. However



attractive for pattern processing, attention must be paid to combining this mea-
sure with prototype-based learning methods, such as the unsupervised clustering
with SOM [6] or neural gas (NG) [7] or the supervised classification with LVQ [6].
Ad-hoc solutions just replace the Euclidean distance, stated in the original for-
mulations of the algorithms, by a correlation measure without paying attention
to the prototype update. Thus, winner selection is changed, but update is still
realized for minimizing Euclidean distances by wnew ∝ x−wold [2], not for max-
imizing correlations. This realization is also found in commercial bioinformatics
tools, such as ArrayMiner, GeneSpring, or J-Express Pro for a SOM-based gene
profile clustering and visualization. The common goal of these programs is gene
expression analysis, i.e. the identification of key regulators and coexpressed
genes that determine metabolic functions in developing organisms. Since ex-
pression profiles are usually assigned to underlying biological objects, auxiliary
information for supervised classification is available, such as the developmental
stage of the probed tissues, or the stress factors applied to the growing organ-
isms. Here, the supervised generalized relevance learning vector quantization
(GRLVQ, [4]) is taken as basis for extensions, because its large-margin general-
ization properties and its metric adaptivity are founded on strict mathematical
derivations of the parametrized squared Euclidean metric [3]. The key issue of
GRLVQ is the minimization of a classification cost function; this central idea is
transferred to correlation-based similarity. Then we present an application of
the new GRLVQ-variant to detect bias in gene expression studies.

2 Generalized Relevance LVQ (GRLVQ) and extensions

Given a set of training data X = {(xi, yi) ∈ R
d × {1, . . . , c} | i = 1, . . . , n}

to be classified with d-dimensional elements xk = (xk
1 , . . . , xk

d) and c classes.
A set W = {w1, . . . ,wK} of prototypes is used for the data representation,
wi = (wi

1, . . . , w
i
n, yi) ∈ R

d×{1, . . . , c}, with class labels yi attached to locations
in the data space.

The classification cost function to be minimized is given in the generic form [4]:

EGRLVQ :=
n∑

i=1

g
(
qλ(xi)

)
where qλ(xi) =

d+
λ (xi) − d−

λ (xi)
d+

λ (xi) + d−
λ (xi)

.

By summing up the classification costs of all patterns, EGRLVQ serves as a quality
measure of the classification depending on the similarity, or likewise dissimi-
larity, of the presented pattern xi and the two best-matching prototypes, wi+

representing the same label as xi and wi− a different label. Usually a sigmoid
transfer function g(x) = sgd(x) = 1/(1 + exp(−x)) ∈ (0; 1) is applied [9]. The
implicit degrees of freedom for the cost minimization are the locations of the
prototypes in the weight space and, additionally, a set of free parameters λ con-
nected to the function dλ(x) = dλ(x,w) comparing pattern and prototype. In
prior work, dλ(x) was supposed to be a metric in mathematical sense, i.e. tak-
ing only non-negative values, conforming to the triangle inequality, and giving
a distance of d = 0 only for w = x. These conditions make an intuitive in-
terpretation of prototypes possible. However, if just a well-performing classifier



invariant to certain features is wanted, distance conditions might be relaxed and
instead a similarity measure be plugged into the algorithm. Overall similarity
maximization can be expressed in the GRLVQ framework by flipping the sign
of the measure and sticking to the minimization of EGRLVQ. Since the iterative
GRLVQ update implements a gradient descent on E, d must be differentiable
almost everywhere, no matter if as distance or as similarity measure.

Partial derivatives of EGRLVQ yield the generic update formulas for the closest
correct and the closest wrong prototype and the metric weights:

�wi+ =−γ+ · ∂EGRLVQ

∂wi+ =−γ+ ·g′ (qλ(xi)
)· 2 · d−

λ (xi)

(d+
λ (xi) + d−

λ (xi))2 · ∂d+
λ (xi)

∂wi+

�wi−= γ− · ∂EGRLVQ

∂wi− = γ− ·g′ (qλ(xi)
)· 2 · d+

λ (xi)

(d+
λ (xi) + d−

λ (xi))2 · ∂d−
λ (xi)

∂wi−

�λ = −γλ · ∂EGRLVQ

∂λ =−γλ ·g′ (qλ(xi)
)· 2·∂d+

λ (xi)/∂λ·d−
λ (xi) − 2·d+

λ (xi)·∂d−
λ (xi)/∂λ

(d+
λ (xi) + d−

λ (xi))2

Learning rates are γλ for the metric parameters λj , all initialized equally by
λj = 1/d, j = 1 . . . d; γ+ and γ− describe the update amount. Their choice
depends on the used measure – generally, they should be chosen according to the
relation 0 ≤ γλ � γ− ≤ γ+ ≤ 1 and decreased within these constrains during
training. Metric adaptation should be realized slowly, as a reaction to the quasi-
stationary solutions for the prototype positions. Moreover, the normalization
of

∑d
i=1 λi = 1 is necessary in order to prevent divergence of the parameters

λ. The above set of equations is a convenient starting point to test different
concepts of similarity by just inserting the denoted partial derivatives of dλ(x).

3 Metrics and similarity measures

The missing ingredient for carrying out comparisons is either a distance metric or
a more general (dis-)similarity measure dλ(x,w). For reference, formulas for the
weighted Euclidean distance will be given. Then, by relaxing the conditions of
metrics, two measures are derived from the Pearson correlation, which inherit the
invariance to shifting and amplitude scaling. The feature of prototype invariance
implemented by the presented update dynamic is desirable in situations when
mainly frequency information and simple graph-matching is accounted for. More
details on graph-matching properties or general functional data processing with
the prototype-based unsupervised SOM algorithm are given by Rossi et al. [8].

3.1 Weighted Euclidean metric

The weighted Euclidean metric yields the following set of equations [10]:



dEUC
λ (x, wi) =

d�
j=1

λ
bλ
j · (xj − wi

j)
bw , integers bλ , bw ≥ 0 , bw even

⇒ ∂dEUC
λ (x, wi)

∂wi
j

= −bw · λbλ
j · (xj − wi

j)
bw−1,

∂dEUC
λ (x, wi)

∂λj
= bλ · λbλ−1

j · (xj − wi
j)

bw .

For simplicity, roots have been omitted. In the squared case with bw = 2,
the derivative for the prototype update 2 · (xj − wi

j) is recognizable as Hebbian
learning term. In other cases, large bw tend to focus on dimensions with large
differences, and small bw focus on dimensions with small differences. Approved
values for the exponents of the relevance factors are bλ ∈ {1, 2}.

3.2 Correlation measures

In the following, the common definition of the Pearson correlation

r = dr(x,wi) =

∑d
j=1 (wi

j − µwi) · (xj − µx)√∑d
j=1 (wi

j − µwi)2 ·
√∑d

j=1 (xj − µx)2
∈ [−1; 1] (1)

is not suitable in practice, because only a small range of values is taken and, fur-
thermore, for well-matching vectors the calculated values are maximum instead
of minimum. Therefore, inverse fractions of appropriately reshaped functions
will be taken in the following. Since metric adaptivity has turned out to be ben-
eficial, free parameters are added here to the covariance expression for weighting
individual data dimensions. Then, the numerator of Eqn. 1 becomes

H :=
d∑

j=1

λj · (wi
j − µwi) · (xj − µx) .

The variable relevance factors are formally assigned to the adaptive weight
derivations from the mean in order to scale the prototypes’ influence, but not
the static data. This deliberate asymmetry yields the following two separate
variance terms for the denominator:

W :=
d∑

j=1

λ2
j · (wi

j − µwi)2 and X :=
d∑

j=1

(xj − µx)2 .

Subsequently, these shortcuts for rλ = H /
√

W ·X will become very handy in or-
der to derive two application-specific heuristic correlation measures, the squared
inverse correlation r → r−2 and the shifted inverse correlation r → (1 + r)−k.
While the former r−2 treats the cases of correlation and anti-correlation as simi-
lar, the latter (1 + r)−k distinguishes these cases. Both measures must be derived
independently, because the domain [−1; 1] of r must be transformed into appro-
priate new ones that are suitable for fast GRLVQ cost function minimization.



Squared inverse correlation

Since square roots in Eqn. 1 complicate calculations, the expression is taken
to the inverse power of two. This negative power transforms the output from
[−1; 1] to [1;∞) - a simpler formulation such as 1 − r2 did not exhibit satis-
factory convergence in practice; maybe there exist many solutions close to zero
that induce a plateau in the cost function. In contrast to that, inverse power
cost functions yield large correction terms for badly correlated prototypes. The
inverse correlation measure and its derivatives are expressed by:

dr−2

λ (x, wi) =

��d
j=1 λ2

j · (wi
j − µwi )2

� · ��d
j=1 (xj − µx)2

�
��d

j=1 λj · (wi
j − µwi ) · (xj − µx)

�2 =
W · X
H 2

⇒ ∂dr−2

λ (x, wi)

∂wi
j

= 2 · X ·
λj · (wi

j − µwi ) · H − (xj − µx) · W
H 3

· λj

∂dr−2

λ (x, wi)

∂λj
= 2 · X ·

λj · (wi
j − µwi ) · H − (xj − µx) · W

H 3
· (wi

j − µwi ) .

But attention must be paid: minimum values are returned from dr−2

λ for
both maximum correlation and maximum anti-correlation; hence, both data
characteristics will become represented by the same prototype. It depends on the
specific application if this is property is desirable or not: while gene coexpression
analysis requires a clear distinction of the correlated and the anti-correlated
profiles, multi-class problems with highly asymmetric feature vector profiles are
likely to profit from the squared measure. A reformulation which maintains and
emphasizes positive correlation is the shifted inverse measure discussed in the
next section.

Shifted inverse correlation

In order to direct the learning process towards only positive correlations, a unit
shift of r from its minimum of −1 to 0 is taken as denominator argument of a
power fraction. This yields ∞ in the rare case of perfect anti-correlation and
values close to zero for perfect correlation. The according expressions for the
measure (1 + r)−k and its derivatives are:

d
(1+r)−k

λ (x, wi) =
1

(1 + dr(x, wi))k
=
�
1 +

H√
W · √X

�−k
=: R−k

⇒ ∂d
(1+r)−k

λ (x, wi)

∂wi
j

= k·R−k−1 ·
λj ·(wi

j − µwi ) · H − (xj − µx) · W√
W 3 · √X

· λj

∂d
(1+r)−k

λ (x, wi)

∂λj
= k·R−k−1 ·

λj ·(wi
j − µwi ) · H − (xj − µx) · W√

W 3 · √X
· (wi

j − µwi ) .

The integer parameter k > 0 takes influence on the convergence: too low
values require large learning rates and induce many training cycles, whereas too
large values inhibit the generalization capabilities and lead to numeric instabil-
ities; in experiments, values in the range of 8 ≤ k ≤ 20 have turned out to be
suitable – the experiments given below use a value of k = 16.
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Fig. 1: Data profiles compared with different similarity functions. Relation
signs for the squared Euclidean metric and the squared inverse correlation differ:
dEUC(RS, P1)=0.82<dEUC(RS, P2)=1.81 but dr−2

(RS, P1)=3.55>dr−2
(RS, P2)=1.25.

As illustrated in Fig. 1, correlation measures can have fundamentally dif-
ferent properties than the Euclidean distance: the two profiles compared with
a reference profile yield opposite relations, depending on the applied similarity
function. Although the z-score transform —mean subtracted data scaled by
standard deviation— can be roughly found in the Pearson term of Eqn. 1, data
preprocessing cannot transform the classification problem into an equivalent one
solvable with the Euclidean metric; the update formulas exhibit structural differ-
ences. As a rule of thumb, if a prototype is similar to input points in Euclidean
sense, then it is very likely that it is also highly correlated to them. The other
direction is untrue: if high correlation exists, there might a large Euclidean
distance. Thus, potentially fewer prototypes are necessary for representations
based on correlation similarities. This way sparser data models can be realized.

4 Experiments

4.1 Handwritten digit recognition
The first experiment is a multi-class problem of recognizing handwritten char-
acters available from the FL3 handwritten symbol database [1]. 3471 binary
coded images (32×32) of the digits 0 . . . 9 are given in the form of extracted
218-dimensional feature vectors as described in Villmann et al. [10]. For refer-
ence, the same data sets as in [10] are used, i.e. feature vectors of the original
32×32-images and for those from affine transforms to 64×64-images. Thus, two
training sets containing 2280 patterns and two test sets with 1191 patterns are
available. For comparison with recent extensions of LVQ given in [10], training
utilizes 10 prototypes per class and applies 500 epochs. Results are summed up
in table 1. For the original images, the shifted inverse correlation measure yields
the best results for training and testing. This high accuracy is particularly re-
markable in comparison to the supervised relevance neural gas algorithm (SRNG)
which adapts not only the closest matching and the closest mismatching proto-
type but which additionally accounts for the neighborhood. Also squared inverse
correlation measure performs well with GRLVQ. For reference, generalized LVQ
(GLVQ) [9] with cost function and Kohonen’s original LVQ3 [6], both Euclidean
classifiers like SRNG, yield clearly lower accuracies. The transformed 64 × 64-
images are still more difficult to learn: decreased generalization performance



Set/Method GRLVQ(1+r)−16 GRLVQr−2 SRNG GLVQ LVQ3

32 × 32-train 98.3% 97.7% 92.4% 91.5% 83.2%
32 × 32-test 93.6% 93.0% 89.4% 88.0% 80.1%
64 × 64-train 95.4% 96.1% 86.4% 86.1% 71.5%
64 × 64-test 78.6% 82.7% 84.3% 75.4% 68.7%

Table 1: Digit classification. Results for SRNG, GLVQ, LVQ3 are taken from [10].

of all models indicates a multi-modal data distribution or a non-representative
training set. Although GRLVQr−2 exhibits the best accuracy on the training
set, the generalization capability of SRNG is better. However, if the reference
training conditions for GRLVQr−2 are relaxed to 2500 epochs (it is assumed that
the reference results have optimally converged), accuracies of 96.4% and 85.3%
are obtained for training and testing, respectively, with only 5 prototypes per
class. These good results for difficult data indicate a general suitability of the
correlation measures for other classification tasks.

4.2 Bias detection in gene expression experiments
The second study is connected to macroarray data. Expression profiles of 1421
genes were collected from filial tissues of barley seed during 7 developmental
stages. For control purposes, each experiment has been repeated from 2 sets of
independently grown plant material. The question of interest is, if a systematic
difference can be found in the gene expression profiles resulting from the two
experimental series. Thus, 1421 data vectors in 7 dimensions, are considered
for each of the two classes. Since only rough tendencies are of interest, a single
prototype is used for each class. 7500 epochs of 25 separate runs on random
half splits of the available data have been run for the weighted squared Euclid-
ean and both correlation measures with the best manually found parameters.
The training accuracy of the Euclidean-based classifier is 51.30± 1.34% and the
testing accuracy is 50.02 ± 1.23%, i.e. this model does not perform better than
guessing, which is expected for two identically conducted experiments. Anyway,
the shifted inverse correlation yields a generalization accuracy of approximately
54%. Even better, the squared inverse correlation increases the test set accuracy
to 64.57 ± 1.60% at a training accuracy of 68.34 ± 1.88%. These results point
out the a significant difference between the expression profiles from either exper-
iments. A look at the average metric parameters µ(λj) with σ(λj) < 0.0065∀ j

µ(λ) = (0.137(1), 0.139(2), 0.150(3), 0.149(4), 0.145(5), 0.140(6), 0.139(7))

reveals emphasis on components j = {3, 4, 5}, λj > 0.143 which are greater
than the average of 0.143 ≈ 1/7. Further biological investigations indicated
a very slight shift in assigning developmental stages between the two sets of
independent experiments. In the conducted gene expression experiments a ro-
bust transcriptional reprogramming occurred during intermediate stage related
to components 4 and 5 of filial tissue development. Although overall expression
data between the two sets of experiments are hardly distinguishable in practice,
the slight systematic influence depending on a precise assigning of the develop-
mental stages affects gene expression during the intermediate phase. These slight
differences in the mutual correlations were detected and could be exploited by
the GRLVQr−2-classifier, a useful property for processing biological observations.



5 Conclusions and future work

Adaptive correlation-based similarity measures have been successfully integrated
into the existing mathematical framework of GRLVQ learning. The experiments
show that there is much potential in using non-Euclidean similarity measures.
High sensitivity to specific differences in the data is realized, and very good clas-
sification results can be obtained with a small number of prototypes. A potential
drawback of the obtained prototypes is the difficulty to interpret them, especially
in case of the squared inverse correlation, for which both correlated and anti-
correlated data are matched by the same prototype. Further studies must reveal
in which way the adapted metric λ-parameters emphasize certain data dimen-
sions; preliminary results show differences and similarities to the results obtained
for the adaptive Euclidean measure, but specific characterization will be neces-
sary. The next step will be the integration of the correlation measures into
the supervised relevance neural gas (SRNG) method in order to further improve
convergence and accuracy. Future applications of the proposed correlation-based
classifiers will be implemented for the analysis of high-throughput gene expres-
sion data in order to identify key regulators in clusters of coexpressed genes.
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