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Abstract. Non-stationary signal classification is a difficult and complex
problem. On top of that, we add the following hypothesis: each signal
includes a discriminant waveform, the time location of which is random
and unknown. This is a problem that may arise in Brain Computer In-
terface (BCI). The aim of this article is to provide a new description to
classify this kind of data. This representation must characterize the wave-
form without reference to the absolute time location of the pattern in the
signal. We will show that it is possible to create a signal description using
graphs on a time-scale representation. The definition of an inner prod-
uct between graphs is then required to implement classification algorithm.
Our experimental results showed that this approach is very promising.

1 Introduction

The classification of non-stationary signals is a common and difficult problem
in signal processing. Classical statistical descriptors like mean, or Fourier coeffi-
cients are not efficient descriptors for such data where time-dependent informa-
tion are needed. Usual approaches consist in using Time-Frequency (TFRs) or
Time-Scale Representations (TSRs). Both solutions lead to a high dimensional
classification problem. Furthermore, if the discriminative part of the signal is
a transient signal, the time location of which is unknown and variable, then a
translation invariant classifier is required. This situation occurs in a classical
Brain Computer Interface (BCI) problem: the P300 speller paradigm [1].

Various time-frequency strategies have been implemented within this context.
The modulation frequency defined by Sukittanon et al. [2] can be seen as a model
of each TFR frequency. Hory et al. [3] propose to model the TFR using a mixture
of χ2 distributions, to focus on discriminant patterns. Michel et al. [4] use a
graphical structure to characterize the pattern skeleton of the TFR. Another
approach consists in working in the time-scale plane: Mallat [5] introduced a
TSR based on wavelet maxima. Saito and Coifman [6] propose to optimize the
representation to improve the classification results. Crouse et al. [7] obtain good
results for signal classification based on the Hidden Markov Model (HMM) for
each TSR scale.
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We propose to use TSR in order to cope with the non-stationary signals.
Then we will reduce the representation dimension, by means of TSR Gaussian
modeling. Finally, the building of a graph between Gaussian models introduces
comparative time information, which enable us to deal with the translation in-
variance problem.

Davy et al. [8], show the interest of using Support Vector Machines (SVMs)
for non-stationary signal classification. Since we are using a graph representation
of the TSR, we will adapt the graph kernel of Kashima et al. [9] as a SVM
kernel. We will compare the results with the k nearest neighbors (knn) universal
classifier. SVMs use the above mentioned inner products, and knn use the
induced distances.

Section 2 presents the data used in this paper and the details of the graphical
description. Section 3 deals with the definition of the inner product in graph
space. We will focus on alternative methods in section 4. Finally, we will
compare the results for classifying the signals of the different algorithms (section
5) and give some conclusions (section 6).

2 Data and data description

2.1 Building the simulated data

In many signal classification applications, data are composed of a pattern and
noise. The pattern shape is characteristic, whereas its time location is unknown
and random. For instance, when we try to identify a response to a stimulus in an
electroencephalogram (EEG) [1], the time location of this response is unknown.

Hence, we worked on artificial data that present such characteristics. The
signals S(t) (exponential decreasing chirps) are generated according to:

S(t) = mu,v(t − τ)Γ(t − τ) + b(t) with: mu,v(t) = e−αt cos((u + vt)t + φ) (1)

where Γ(t) is the step function and b(t) a Gaussian white noise (standard devi-
ation σb).

The objective of this work is to discriminate two classes of these signals which
vary in u and v. In class 1 we have u = 1 · 10−3, v = 2 · 10−3 and in class −1
we have u = 5 · 10−4, v = 6 · 10−4. τ is drawn according to uniform distribution.
We compare two datasets with σb = 0.02 and σb = 0.2, which lead respectively
to signal to noise ratio (SNR) of 14.08dB and -25.75dB.

2.2 Time-scale representation

Time-scale representation is a decomposition of a signal S(t) over elementary
functions that are well concentrated in time and frequency [5]. Given a wavelet
ψ located on scale a and time b, let Pa,b be the projection of S(t) over the analytic
function ψa,b. The set {Pa,b} of coordinate {a, b} define the time-scale plane.
Finally, the time-scale plane is divided into k parts, with: k = card(a)card(b).
For more clarity, we re-index the notations: the set of coefficients becomes



{Pi}i=1,...,k of time-scale coordinates (bi, ai). Squared coefficients P 2
i correspond

to the local energy.
Translation covariance is required to face the hypothesis of a pattern, the

time location of which is random. A translation covariant representation r must
verify: r(S(t − τ)) = rτ (S(t)) where rτ is the translated representation. Or-
thogonal wavelet transforms do not verify this property. For this reason we use
continuous wavelet transform (CWT) to solve this problem (Fig. 2).

2.3 Graphs representation

Although time is important to describe the pattern, it is a penalty factor due
to the random time position of the patterns. The solution consists in filtering
discriminant information by using comparative time between selected regions
of the plane. This novel graph representation r relies on a set of nodes H =
{hi}i=1,...,k (with hi = {Pi, ai}) and a matrix E = {ehihj} which defines the
arcs between the nodes (ehihj = ∆tij = bj − bi):

r : F → G
{Pi, ai, bi}→{hi}, E (2)
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Fig. 1: From time-scale to graph representation. Scale ai and coefficient Pi

are gathered in the node hi in graph space G, the time description switch from
absolute references bi to comparative time measures ∆tij = bj − bi.

This graph is fully linked, each coefficient of the wavelet transform is a node
linked to all the other coefficients. Nodes comprise scale location and weight
informations, arcs are labeled with comparative time information. This graph is
very large: it counts k nodes and k(k − 1) arcs.

Representation r has a very high dimensionality and the computation com-
plexity of the inner product between graphs is closely related to the number of
nodes in the graphs. Hence, it is necessary to reduce the representation size in
order to compute efficiently the inner product in the graph space.

We limit the field of application to the case where the discriminant informa-
tion lies in high energy regions of the time-scale representation, without taking
into account possible interferences. Hence, we propose to reduce the dimen-
sionality of the graph by modeling the CWT as a Gaussian mixture [10]. The
modeling will enable us to reduce the dimension while keeping the TSR shape,
focusing on high energy regions of the time-scale plane [3]. The nodes are com-
posed of the covariance matrix of the region, the sum of the coefficients in the
region, and the scale location of the Gaussian. The arc labels are ∆t, the com-
parative time position between the Gaussian models (Fig. 2).



S. Mallat [5] showed that the local maxima in the continuous wavelet trans-
form allows us to rebuild a denoised signal. This high energy modeling will
reduce the size of the representation as well as the original signal noise. For
more details about this graph representation, the reader can refer to [11].
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Fig. 2: Continuous wavelet transforms and graph representations. The two
signals on top belong to class 1, the two bottom ones belong to class -1. Low
noise level (SNR=14.08dB).

3 Distance and inner product between graphs

We use the inner product between graphical representations based on Kashima
et al. article [9]. The idea is to compare two label sequences generated by two
synchronized random walks on the two graphs. The operation is repeated until
there is convergence of the result. The detailed computation of K(G1, G2) is
given in the paper of Kashima et al. . We use the norm induced by the inner
product to define a distance between graphs.

4 Alternatives

In order to validate our approach, we implemented three other descriptions for
the data.
Classical representations To justify a complex and costly approach, we im-
plemented the simplest available description: the raw data. Another common
description is based on statistical descriptors.
Translation arrangement It is clear that a simple inner product 〈r(S1), r(S2)〉
is not able to face the hypothesis of an unknown time located pattern. Hence, we
build the set of S2 translated representation rτ (S2) and we aim to find the highest
inner product between the representation of S1 and the set rτ (S2). Ideally, we
would use the following translation invariant inner product:

〈S1, S2〉 = max
τ∈Ω

(k(r(S1), rτ (S2))) (3)

where Ω is the set of translations. We apply this idea for both raw signals and
wavelet transform. Given the fact that r is translation covariant, we only need
to compute r(S2) once. However, this method is very slow when Ω becomes
large.
Bag of vectors This method uses the nodes of the graph representation. Each



node is a vector containing the parameters of a Gaussian model. We build a
representation which gathers those vectors. The arcs ∆t are not taken into
account. The inner product tries to match pairs of vectors from S1 and S2

representations. Wallraven et al. [12] have designed such a kernel:

Kmatch =
1
2

(
K + KT

)
with: K(S1, S2) =

1
n1

n1∑
i=1

max
j

(
k(V 1

i , V 2
j )

)
(4)

where nk is the number of nodes, V k
i is the ith Gaussian parameter vector in

time-scale representation of Sk.
Because of the max function, kernels in equation (3) and (4) are not posi-

tive definite. We approximate maxyj∈Y (k(xi, yj)) by 1
|Y|

∑|Y|
j=1 exp

(
− ||xi−yj ||2

2σ2

)
.

Using this formulation and considering the bag of vectors as different instances
of the same signal, this kernel can be seen as a Multiple Instance Kernel [13].

5 Results

|Learn.|/|Test.| 1/1000 400/1000

Classifiers 1-nn and SVM 1-nn SVM

Coef. 49.59% (±4.74) 30.76% (±1.53) 31.14% (±1.43)

Raw sig. 49.99% (±0.84) 48.10% (±2.01) 47.08% (±0.97)

Stat. descr. 47.16% ±(8.22) 35.54% (±2.12) 19.27% (±0.98)

T.A. (coef.) 46.12% (±3.39) 24.17% (±1.54) 23.57% (±1.38)

T.A. (sig.) 49.73% (±1.15) 43.17% (±1.99) 42.27% (±1.63)

Bag of vect. 29.40% (±15.24) 11.9% (±1.13) 8.29% (±0.80)

Graph 13.98% (±13.26) 6.66% (±0.64) 5.25% (±0.35)

Table 1: Misclassification rate on the test set, average over 30 runs. High noise
level (SNR=-25.75dB). |Learn.|/|Test.|: number of data in learning and test set
for each class, T.A.: translation arrangements .

The misclassification rates are given in table table 1 for highly noised sig-
nals (SNR=-25.75dB), using Support Vector Machine (SVM) [14] and k-nearest
neighbors (knn). Results are averaged over 30 runs, on a 1000 signal test set.
The size of learning set is variable (between 1 and 400 signals). The classifi-
cation problem on high SNR signals (SNR = 14.08dB) is trivial even with the
one signal learning set. Graph and bag of vectors kernel achieved 100% correct
classification and demonstrate their abilities to describe the discriminant pattern
whatever its position in the signal.

Table 1 shows that graph kernel combined with SVM is the best method for
this problem, with the lowest misclassification rate and the lowest variance of
the results. Graph kernel outperformed bag of vectors kernel by more than 3%
whereas the only difference between the two methods is the time information.



6 Conclusions

Non vectorial descriptors open new perspectives in various fields. In the case
of non-stationary patterns, randomly located in the signal, the graphical repre-
sentation enable us to keep a time description without absolute reference. The
results point out the interest of such a description and the efficiency of the graph
kernel. This representation can be interesting for other applications in the field
of non stationary signal classification. As a matter of fact, it is compact and
focuses on discriminant part of the TSR.

One perspective of this work is to explore different ways to build the graph:
we need to define a criterion (like Fisher’s one) to determine which parts of the
plane (or which Gaussians) are discriminants. This will enable us to treat the
case where discriminant information resides in low energy part of the plane.
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[13] T. Gärtner, P.A. Flach, A. Kowalczyk, and A.J. Smola. Multi-instance kernels. In ICML,
pages 179–186, 2002.

[14] V. N. Vapnik. The Statisitcal Learning Theory. Springer, 1998.


