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Abstract. A method to distinguish between co-regulated genes that are
up- or down-regulated under a given treatment, based on the composition
of the upstream promoter region, would be a valuable tool in deciphering
gene regulatory networks. Ideally, the classification should be based on a
small number of regulatory motifs, whose presence in the promoter region
of a gene induce a significant effect on its transcriptional regulation. In
this paper, we investigate the use of Relevance Vector Machines for this
task, and present initial results of an analysis of glucose response in
the model plant Arabidopsis thaliana, that has revealed novel biological
information.

1 Introduction

The interpretation of DNA sequence and hence the ability to use the sequence
to understand biological processes such as growth, development and disease
resistance is one the major challenges in biology. To address these needs a
catalog or “parts list” of the structural and functional components encoded
in DNA sequence needs to be assembled. The information content of DNA is
transcribed into RNA for further processing in cells, either as a structural RNA
or into protein sequences through the well- known triplet codons. Most higher
organisms, from flies to plants to humans, have about 12,000–30,000 genes
that encode different proteins, the building blocks of cells. The information
specifying the time, cellular location and amount of RNA transcribed from each
of these genes is specified by extensive DNA sequences adjacent to the genes.
Most biological processes are regulated by coordinating the transcription of
multiple genes, therefore assessing and understanding the sequence information
directing transcription is of fundamental and widespread interest.
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The transcription of genes is regulated by proteins called transcription fac-
tors that interact with specific DNA sequences in regulatory regions of genes.
Combinations of different transcription factors binding to regulatory regions
provide the high specificity of gene expression. By identifying these regulatory
sequences and their relative positions in genes it will be possible to establish
the complex regulatory circuitry coordinating the expression of thousands of
genes necessary to execute a biological process.

The transcription of all genes can now be accurately measured using mi-
croarray technology in many species. By establishing relationships and de-
pendencies between transcript abundance and regulatory sequences it may be
possible to identify specific combinations of transcription factor binding sites
that confer transcript levels. We propose the use of the Relevance Vector Ma-
chine (RVM) [6] to classify co-regulated genes as a means of identifying putative
transcription factor binding sites. As an experimental system we use microar-
ray and genome data from the plant Arabidopsis, which is completely sequenced
and has a well characterised and compact genome. RVM classification of gene
expression in response to the simple nutrient glucose identified a large number
of putative transcriptional regulatory circuits that were verified by subsequent
experiments.

2 The Relevance Vector Machine

In a pattern recognition setting, the Relevance Vector Machine (RVM) [6] can
be viewed as a simple logistic regression model, with a Bayesian Automatic
Relevance Determination (ARD) prior [3] over the weights associated with each
feature in order to achieve a parsimonious model. Let A = {A, C, G, T} represent
an alphabet of symbols representing the bases adenine, cytosine, guanine and
thymine respectively. The RVM constructs a decision rule from a set of labelled
training data,

D = {(xi, ti)}`
i=1, xi ∈ Ani , ti ∈ {0, + 1},

where the input patterns, xi, consist of strings drawn fromA of varying lengths,
describing the upstream promoter regions of a set of co-regulated genes. The
target patterns, ti, indicate whether the corresponding gene is up-regulated
(class C1, yi = +1) or down-regulated (class C2, yi = 0) under a given treatment.
The RVM constructs a logistic regression model based on a set of sequence
features derived from the input patterns, i.e.

p(C1|x) ≈ σ {y(x;w)} where y(x;w) =
N∑

i=1

wiϕi(x) + w0, (1)

and σ {y} = (1+exp{y})−1 is the logistic inverse link function. In this study a
feature, ϕi(x), represents the number of times an arbitrary substring, si ∈ Ad,
ocurrs in a promoter sequence x. A sufficiently large set of features is used



such that it is reasonable to expect that some of these features will represent
oligonucleotides forming a relevant promoter protein binding site and so provide
discriminatory information for the pattern recognition task at hand. Assuming
a Bernoulii distribution for P (t|x), the likelihood of the training data, D, can
be written as

P (D|w) =
∏̀
i=1

σ {y(xi;w)}ti [1− σ {y(xi;w)}]1−ti (2)

To form a Bayesian training criterion, we must also impose a prior distribution
over the vector of model parameters or weights, p(w). The RVM adopts a
separable Gaussian prior, with a distinct hyper-parameter, αi, for each weight,

p(w|α) =
N∏

i=1

N (wi|0, α−1
i ). (3)

The optimal parameters of the model are then given by the minimiser of the
penalised negative log-likelihood,

log {P (D|w)p(w|α)} =
∑̀
i=1

[ti log yi + (1− ti) log(1− yi)]−
1
2
wT Aw. (4)

where yi = σ {y(xi;w)} and A = diag(α) is a diagonal matrix with non-zero
elements given by the vector of hyper-parameters α = (α1, α2, . . . , αN ). This is
achieved via the efficient Iteratively Re-Weighted Least Squares (IRWLS) algo-
rithm [4]. Next, Laplace’s method is used to obtain a Gaussian approximation
to the posterior density of the weights,

p(w|D,α) ≈ N (w|µ,Σ), (5)

where the posterior mean and covariance are given by

µ = ΣΦT Bt, and Σ =
[
ΦT BΦ + A

]−1

respectively, Φ is an ` × N matrix of features for each promoter in the train-
ing set and B is a diagonal matrix with non-zero elements bii = yi(1 − yi).
The hyper-parameters are then updated in order to maximise their marginal
likelihood, p(D|α), according to the efficient update formula

αnew
i =

γi

µ2
i

where γi = 1− αiΣii. (6)

This process is repeated until an appropriate convergence criterion is met (see
[6] for details). The maximisation of the marginal likelihood, or evidence,
for the hyper-parameters, α, leads to the hyper-parameters associated with
uninformative features becoming very large. This in turn forces the value of
the associated weight essentially to zero, allowing redundant features to be



easily identified and pruned from the model. Given a sufficiently rich set of
sequence features, it seems reasonable to suggest that the features retained
by the RVM may represent (parts of) transcription factor binding sites as
they provide discriminatory information distinguishing between up- and down-
regulated genes.

3 Results

Initial experiments investigate the response of Arabidopsis to glucose. Seedlings
were grown in liquid culture for 7 days on low sugar concentrations (0.5%
glucose) and constant light to abrogate light responses. After 7 days growth,
the medium was replaced by a glucose fee medium for 24 hours and then glucose
or mannitol (a non-toxic, non-metabolised sugar acting as an osmotic control)
were added to 3% w/v. Treatments were designed to reveal transitions in
gene expression from a sugar-restricted to a sugar-replete state. Microarray
ananlysis, using Affymetrix ATH1 GeneChips, indicated that a set of 1,844
genes demonstrated a change in expression of 2.5-fold or more at the 2, 4
and 6 hour time points, of these 1,051 were found to be up-regulated and 793
down-regulated. Full details of the experimental method are given in Li et al.
[2]. The learning task for the RVM was then to select discriminative features
characterising the promoters of these co-regulated genes, allowing up-regulated
genes to be distinguished from the down-regulated genes.

A database containing approximately 1,000 base pairs of DNA sequence
data upstream from the initial ATG codon of each of the co-regulated genes
was assembled. Two sources of candidate transcription factor binding sites
were investigated. The first approach simply selects all 1024 possible strings of
length five drawn from A. Oligonucleotides of less than five bases will ocurr so
frequently in all promoters as to be unlikely to provide useful discriminatory
features. Features representing longer oligonucleotides will be more specific,
and being only be found in the promoters of a few genes will again be unlikely
to provide good discriminatory features, as their coverage is low. Features rep-
resenting oligonucleotides of length five were found to be a good compromise as
they are sufficiently long to adequately characterise the core of a transcription
factor binding site, without being too specific or too pervasive. The transcrip-
tion binding site can appear on either strand of the DNA double helix, and
so complementary features, such as ACTG and TGAC, can be combined, leaving
only 512 candidate features. The second approach utilises features formed from
known transcription factor binding sites drawn from the PLACE database [1].
This is a repository compiled from published reports of motifs corresponding
to known plant cis-acting DNA regulatory elements. A total of 253 such motifs
were found to be present in the promoters of the genes found to be co-regulated
in response to glucose. For computational expedience, features ocurring in
fewer that 10 promoters were discarded due to insufficient coverage.

The performance statistics for RVM classifiers based on features drawn from
the set of all 5-mers and from the PLACE database, presented in this section,
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Figure 1: Receiver operating characteristic convex hull (ROCCH) curves (a)
and confusion matrices for RVM classifiers based on PLACE (b) and 5-mer (c)
candidate features.

were evaluated using a 10-fold cross-validation procedure [5]. Figure 1 (a)
shows the convex hull of the receiver operating characteristic curves for RVM
classifiers, the classifier based on PLACE features performs marginally better
than that based on 5-mer features. This is also reflected in the area under the
ROCCH statistic, having a value of 0.754 for the PLACE feature set and 0.745
for the 5-mer feature set. The RVM based on the PLACE feature set classified
69.9% of the patterns correctly, whereas the RVM based on 5-mer features
classified only 68.4% correctly. The confusion matrices for both classifiers are
given in Figure 1 (b) and (c).

Table 1 lists a sample of the strongest PLACE features retained by the RVM
(see Li et al. [2] for additional features), showing a mix of expected elements
(e.g. IBOX & AMMORESIIUDCRNIA1) as well as some less obvious choices
(e.g. TELOBOXATEEF1AA1 & DRECRTCORENT). The TELOBOX and
DRE elements had not previously been implicated in glucose-responsive gene
expression, and so we experimentally verified the significance of these features.
A further micorarray analysis was performed, involving plants engineered to
contain a reporter plasmid with a minimal promoter comprised of tetramers of
these regulatory elements. Both the TELOBOX and DRE elements were found
to confer glucose-responsive expression. Reassuringly, many of the prominent 5-
mer features chosen by the RVM represent (parts of) PLACE element features,
such as GGATA, GATAA and ACCCT, corresponding to the MYBST1, IBOXCORE
and TELOBOX elements.

4 Conclusions

In this paper we have demonstrated that the Relevance Vector Machine can
be used for sparse Bayesian selection of putative transcription factor binding



sites based on microarray gene expression results for co-regulated genes. Our
initial results appear promising, already having predicted novel functions for
two known transcription factors that have been verified experimentally. Fur-
ther work will investigate modelling expression dynamics and will also include
sequence features from exon, intron and 3’ regions.
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Table 1: Some of the PLACE features selected by the RVM in all cross-
validation trials and their average weights and potential target genes.

Element ID Weight Sequence Target Genes

TELOBOXATEEF1AA1 +2.990 AAACCCTAA Ribosomal proteins,
helicases, translation
initiation factors

AMMORESIIUDCRNIA1 +1.335 GGWAGGGT Carbon metabolosm and
DNA replication proteins

QARBNEXTA +1.103 AACGTGT Phenylpropanoid synthesis
and starch metabolism

BS1EGCCR +0.964 ACGGGG Anthocyanin and glucose
metabolism enzymes

DRECRTCORENT +0.808 RCCGAC NaCl, cold & other stress
related genes

IBOXCORENT -3.320 GATAAGR Light related proteins,
T6PS,

IBOXCORE -2.143 GATAA enzymes, mitochondrial
IBOX -0.711 GATAAG biogenesis proteins
MYBST1 -3.214 GGATA Light and protein

degradation proteins


