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Abstract. We provide a stability analysis based on nonlinear feedback
theory for the recently introduced backpropagation-decorrelation (BPDC)
recurrent learning algorithm. For one output neuron BPDC adapts only
the output weights of a possibly large network and therefore can learn in
O(N). We derive a simple sufficient stability inequality which can easily
be evaluated and monitored online to assure that the recurrent network
remains stable while adapting. As byproduct we show that BPDC is highly
competitive on the recently introduced CATS benchmark data [1].

1 Introduction

While recurrent neural networks have matured into a fundamental tool for tra-
jectory learning, time-series prediction, and other time-dependent tasks, major
difficulties for their more widespread application remain. These are the known
high numerical complexity of training algorithms and the difficulties in assuring
stability, which often is crucial in particular for adaptive control applications
(see also the review [2]). Most of the efficient existing algorithms rely on back-
propagation through time to compute error gradients and additionally require
proper adjustment of learning rates and time-constants.

To advance in the direction of a simple online recurrent learning technique,
which could attract an even wider audience to use recurrent networks, in [3]
we have introduced the backpropagation-decorrelation rule (BPDC), which com-
bines three principles: (i) one-step back propagation of errors; (ii) the usage of
the temporal memory in the network dynamics which is adapted based on decor-
relation of the activations, and (iii) the employment of a non-adaptive reservoir
of inner neurons to reduce complexity. The output weights then implement a
linear readout function while at the same time the output neuron provides full
feedback into the reservoir. In its most efficient and useful form, the BPDC rule
applied to learning one output is O(N) and in [3] it has already been shown that
BPDC performs well on a number of standard tasks.

The BPDC rule roots in a combination of recent ideas to differentiate the
error function with respect to the states in order to obtain a “virtual teacher”
target, with respect to which the weight changes are computed [4, 5]. Further,
under the notion “echo state network” [6] and “liquid state machine” [7] non-
adaptive recurrent networks as a kind of dynamic reservoir to store information
about the temporal behavior of inputs have been proposed, which allow to effec-
tively learn a linear readout function. In [3], the BPDC rule has been formally
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Fig. 1: Left: BPDC trains output weights between a dynamic reservoir and the
output neuron, which gives feedback to the reservoir. Right: Network composed
from linear feedforward operator G and nonlinear feedback Φ (see text).

derived and shown that it can be interpreted as a combination of these ideas
leading to (i)-(iii).

In this contribution, we give a formal technique to analyze the stability of the
“fixed dynamic reservoir + output neuron + feedback ” network configuration
shown in Fig. 1. It is based on the small gain theorem from nonlinear feedback
theory and leads to a simple stability inequality to be monitored online while
learning. We demonstrate this technique and give simulations for the recently
introduced CATS benchmark which shed some light on the complex trade-offs
between stability, learning, and network configuration.

2 The BPDC learning rule

We consider fully connected recurrent networks

x(k+∆t) = (1−∆t)x(k) + ∆tWϕ(x(k)) + ∆tWuu(k), (1)

where xi, i = 1, . . . , N are the states, W ∈R
N×N is the weight matrix, Wu the

input weight matrix and k = k̂∆t, k̂ ∈ N+ is a discretized time variable such
that for small ∆t we obtain an approximation of the continuous time dynamics
dx/dt=−x+Wϕ(x) and for ∆t=1 the standard discrete dynamics. We assume
that ϕ is a standard sigmoidal differentiable activation function with ϕ′ ≤ 1
and is applied component wise to the vector x. We further assume that W is
initialized with small random values in a certain weight initialization interval
[−a, a]. Denote by O⊂{1, .., N} the set of indices s of NO output neurons (i.e.
xs output ⇒ s∈O) and let for a single output neuron w.r. O = {1} such that
x1 is the respective output of the network shown in Fig. 1.

If all but the output weights are fixed, we can regard the inner neurons
as dynamical reservoir which is triggered by the input signal and provides a
dynamical memory. The output layer linearly combines these states to read out



the desired output. In [3] the Backpropagation-Decorrelation rule

∆wij(k+1) =
η

∆t

ϕ(xj(k))∑
s ϕ(xs(k))2 + ε

γi(k + 1), (2)

where γi(k+1) =
∑
s∈0

(
(1−∆t)δis + ∆twisϕ

′(xs(k))
)
es(k)−ei(k+1),

has been introduced, where η is the learning rate, ε a regularization constant
(ε = 0.002 throughout), and es(k) are the non-zero error components for s∈O
at time k : es(k)=xs(k)−ys(k) with respect to the teaching signal ys(k). In [3]
it has also been shown that the term ϕ(xj(k))/(

∑
s ϕ(xs(k))2 + ε) enforces an

approximative decorrelation of the neuron output vectors ϕ(xj(k)) over time.
The γi propagate a mixture of the current errors ei(k+1) and the errors in the
last time step es(k) weighted by a typical backpropagation term involving ϕ′.

3 The operator framework

Using the standard notation for nonlinear feedback systems [8, 9] 1 the network
(1) is composed of a linear feedforward and a nonlinear feedback operator Φ:

ẋ = −x + e, e = Wuu + Wϕ(y), y = x.

The Laplace transformation of the linear part yields the forward operator GI(s) =
(I + sI)−1 while the activation function ϕ defines the feedback operator Φ, see
Fig. 1. Φ does not explicitely have to be stated in the frequency domain because
it will be approximated by its gain which is defined by the maximum slope of ϕ.
Denote this network interpretation as ((GI, W), Φ) for the input-output equation

y = GI(Wuu + WΦ(y)) = GIWuu + GΦ(y), (G = GIW).

The network acts as nonlinear feedback system implementing a loop operator
H=̇ ((GI, W), Φ) which transforms Ln

2 signals2 Wuu into L2 output signals y.
Using the small gain theorem, this system is input-output stable (and the origin
is globally exponentially stable for the respective unforced dynamics (1) with
u≡0), if the operator gains γ(GI), γ(G) = γ(GIW) and γ(Φ) are finite and the

small gain condition: γ(G)γ(Φ) < 1 (3)

holds. The small gain condition yields the loop gain estimate for u′ = Wuu

γ(H) ≤ γ(GI)
1 − γ(G)γ(Φ)

where γ(H) = sup
u′

‖H(u′)‖2

‖u′‖2
= ‖H‖2 (4)

is the gain induced by the Lp
2, p = n, 1 norms for the operator H : Ln

2 → L2.
Note that γ(GI) = γ(Φ) = 1 by definition. To derive the stability condition

1Here we give the framework only for continuous time, an analog derivation is possible for
discrete time using the z-transform and sequence spaces, see ([8],chap. 6).

2Strictly speaking we can assume this only after assuring stability of the system, see [9].
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Fig. 2: Left: System composed of inner reservoir subsystem, output subsystem
and feedback.Right: Stability margin vs. weight initialization intervals different
network sizes (averaged over 50 network initializations.)

now decompose the network in reservoir and output neuron subsystems: let
xr = (x2, ..., xn)T and W r

r the submatrix connecting only these inner neurons.
Then ((GI, W

r
r), Φ) denotes the reservoir subsystem while ((GI, w11), Φ) yields

the 1-dimensional output subsystem. The dimensions of GI and Φ have to be
adjusted, respectively, but their gains remain equal to one. In Fig. 2 the network
is shown as composition of the subsystems connected by the original feedback
weights. The composite system is stable, if the subsystems are stable and because
γ(GI) = γ(Φ) = 1 and thus γ(G) = γ(GIW) = ‖W‖ we obtain for the subsystems
the inequalities ‖Wr

r‖ < 1 and w11 < 1 and, as proved in the Appendix,

‖wo
xr
‖ < (1 − ‖Wr

r‖)(1 − |w11|)‖wxr
o ‖−1 (5)

for the overall network. Here wo
xr

is the vector of trainable weights and wxr
o

the vector of feedback weights from the output to the reservoir. This condition
can be easily monitored online, because the matrix and vector norms on the
right hand side can be precomputed at initialization time and while learning
only the norm of the output weight vector ‖wo

xr
‖ has to be updated. Fig. 2

right shows the right hand side (stability margin) of (5) for different network
sizes and initialization intervals.

4 Simulation results on CATS benchmark

The recently introduced CATS benchmark [1] provided data for a time-series
competition held at IJCNN 2004. The data consist of 5000 points, with 100
points missing at positions 980-1000, 1980-2000, . . . . Error criteria are the
MSQE for all 100 points where a main difficulty is the tailing last 20 data points
4981-5000 because only on-sided information is available there. As the BPDC
algorithm is essentially an online method, it is useful to provide it with estimated
targets also for the unknown data. The following strategy is adopted: first the
last 4096 data points are fast Fourier transformed (fft), where the first four gaps
are filled with suitable random noise around a linear interpolation. This gives
a good estimation in the first four gaps (MSQE≈ 390). For the last 20 points
we use the prediction from the network states as input for the Fourier transform



avg / stddev /best network
network 0.02 0.1-0.055 0.2
50/25 494.56/9.93/478 484.69/15.61/454 485.06/25.67/441
80/30 499.19/7.50/481 499.08/17.14/468 502.24/35.41/443
100/20 521.61/2.03/517 512.69/12.41/488 497.05/33.90/432
100/30 479.92/7.78/464 478.64/13.99/451 488.18/31.62/426
120/40 480.13/7.17/467 498.47/25.78/448 488.51/37.79/412
150/50 487.81/33.27/447 485.18/30.05/439 480.39/76.69/367

Table 1: Average errors over at least 100 networks for the CATS benchmark for
different network size/inputs 50/25-150/50 and different initialization ranges.
The middle column uses initialization close to the border of the stability range
0.1, 0.08,0.07,0.07,0.065,0.055 (for increasing size of networks.)

such that with increasing accuracy of the network, the Fourier transform in
turn becomes more accurate as well (in all gaps). Before each epoch the fft
is computed, the upper 75% of the frequencies are pruned and the result is
back-transformed to serve as teaching signal for the network.

Table 1 shows results for networks (η = 0.03, ε = 0.002) of different sizes and
taking a different number of immediate past values as inputs in three initializa-
tion conditions: provable stable (a=0.02); at the edge of the stability obtained
from Fig. 2, right; and not provably stable (a=0.2) with the presented method.
Because small gain stability conditions are always only sufficient and known to
be conservative in the last case the networks also may be stable and we did not
encounter stability problems in practice. On average all but the 100/20 networks
are ranked third with respect to the results of the times series competition at
IJCANN behind ([10],408) and ([11], 446). The results show the robustness of
BPDC to the initialization which obviously is of crucial importance because the
reservoir is not adapted. On the other hand, the stddev increases with the ini-
tialization range because the reservoir naturally provides more dynamics with
larger weights. These networks are harder to adapt, but the larger variance in
initialization can as well lead to better results, note that the best network with
an error of 367 outperforms [10].

5 Conclusion

In this contribution we have presented a method to prove and monitor stability
for large networks where only the output layer is adapted. Though in principle
the stability method is independent of the learning method used, we use it to
access stability for the BPDC algorithm, which is a new and highly efficient
O(N) learning paradigm for such output weights. The encouraging results on
the CATS benchmark, which has proven to be a very hard task for time-series
prediction, show that stability, efficient online learning, and accuracy can simul-
taneously be achieved with the BPDC learning.



Appendix

Consider the composite loop in operator notation and take norms:

‖xo(s)‖ = ‖GIo(s)eo(s)‖ (eo(s) = wo
uu(s) + wooϕ(xo(s)) + wo

rΦr(xr(s)))
≤ ‖wo

u‖‖u(s)‖ + |woo|‖xo(s)‖ + ‖wo
r‖‖xr(s)‖

≤ ‖wo
u‖‖u(s)‖ + |woo|‖xo(s)‖ + ‖wo

r‖
1

1 − ‖Wr
r‖

‖ur‖

= ‖wo
u‖‖u(s)‖ + |woo|‖xo(s)‖ +

‖wo
r‖

1 − ‖Wr
r‖

‖Wr
uu(s) + wxr

o xo(s)‖

≤ ‖wo
u‖‖u(s)‖ + |woo|‖xo(s)‖ +

‖wo
r‖

1 − ‖Wr
r‖

(‖Wr
u‖‖u(s)‖ + ‖wxr

o ‖‖xo(s)‖) ,

where we used that γ(GI) = ‖GI‖ = γ(Φ) = ‖Φ‖ = 1 and the loop gain es-
timation from the small gain theorem for the reservoir subsystem to replace
the output of the reservoir ‖xr(s)‖ by its the scaled input ‖ur‖/(1 − ‖Wr

r‖),
ur = Wr

uu + wxr
o xo. Solving for ‖xo‖ yields

‖xo(s)‖ ≤
(

1 − |woo| − ‖wo
r‖

1 − ‖Wr
r‖

‖wxr
o ‖

)−1 (
‖wo

u‖ +
‖wo

r‖
1 − ‖Wr

r‖
‖Wr

u‖
)
‖u(s)‖.

Stability requires the denominator of the left hand side be larger zero and we
can solve for the vector of the adapted output weights wo

r as

1 − |woo| − ‖wo
r‖

1 − ‖Wr
r‖

‖wxr
o ‖ > 0 ⇔ ‖wo

r‖ ≤ (1 − |woo|)(1 − ‖Wr
r‖)

‖wxr
o ‖ .
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[7] T. Natschläger, W. Maass, and H. Markram. The ”liquid computer”: A novel strategy
for real-time computing on time series. TELEMATIK, 8(1):39–43, 2002.

[8] M. Vidyasagar. Nonlinear Systems Analysis. Prentice Hall, 2. edition, 1993.

[9] Jochen J. Steil. Input-Output Stability of Recurrent Neural Networks. Cuvillier Verlag,
Göttingen, 1999. (Also: Phd.-Dissertation, Faculty of Technology, Bielefeld University).

[10] S. Sarkka, A. Vehtari, and J. Lampinen. Time series prediction by Kalman smoother with
cross validated noise density. In Proc. IJCNN, pages 1653–1658, 2004.

[11] X. Cai, N. Zhang, G. Venayagamoorthy, and D. Wunsch. Time series prediction with
recurrent neural networks using a hybrid pso-ea algorithm. In IJCNN, pages 1647–1653,
2004.


