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Abstract. An incremental and Growing network model is introduced
which is able to learn the topological relations in a given set of input vec-
tors by means of a simple Hebb-like learning rule. First an overview of
the most known models of Self-Organizing Maps (SOM) is given. Then
we propose a new algorithm for a SOM which can learn new input data
(plasticity) without degrading the previously trained network and forget-
ting the old input data (stability). We report the validation of this model
on extensive experiments using a synthetic problem and the handwriting
digit recognition problem over a portion of the NIST database.

1 Introduction

Data clustering is one of the most traditional and important issues in computer
sciences. Cluster analysis aims at discovering groups and identifying meaningful
distributions and patterns in data sets. Numerous clustering algorithms have
been proposed in the literature, where four major categories of clustering algo-
rithms are identified, namely hierarchical, partitional, density based, and grid
based techniques [1, 2]. In recent years, due to emerging complex applications
such as data and text mining, data clustering has attracted a new round of
attention [3]. One of the main challenges in the design of efficient and robust
clustering algorithms is that, in many applications, new data sets are continu-
ously added into an already huge database. One way to tackle this challenge is
to introduce a clustering algorithm that operates incrementally. However, few
works in the development of incremental clustering algorithms are related in the
literature [4, 5]. This paper presents the Incremental Growing Neural Gas algo-
rithm (IGNG), a new incremental clustering algorithm for numerical data sets
based on self-organizing maps principles. As the experiments conducted in this
study reveal, the IGNG algorithm performs as well as the most known clustering
algorithms in the static clustering way, and give superior performances for an
incremental learning in comparison with the Growing Neural Gas algorithm [6].
In the next section, an overview of the most important self organizing maps is
given. Section 3 discusses how the IGNG algorithm works. Section 4 reports
some experimental results and comparisons conducted on a synthetic data set
and the problem of handwriting digit recognition. Tests are conducted in order
to analyse the performance of this algorithm in different situations including the
problem of data visualisation and more important data sets in high dimension.
Comparisons are given in the supervised meaning by labeling the obtained self
organized map using the learning set labels. Finally, concluding remarks and
future work are given in Section 5.



2 An overview of Self-organizing Map

We first would like to state the properties shared by all models described below.
The network structure is a graph consisting of a set of nodes (units) A and a
set of edges N connecting the nodes. Each unit c has an associated position
( or reference vector) wc in the input space. Adaptation, during the learning,
of the reference vectors is done by moving the position of the nearest (or the
”winning”) unit (neuron) c1 and its topological neighbors in the graph toward
the input signal. For an input signal ξ the nearest unit c1 is :

c1 = min
c∈A

dist(ξ, wc) (1)

and the position update is made following this:

∆wc = ε(t)hc,c1 ‖ξ − wc‖ (2)

where ε(t) is the adaptation step and hc,c1 is a neighborhood function.
We can differentiate two kinds of SOM, Static Self-organizing Map and Growing
Self-organizing Map. The Static SOM have a pre-defined structure which is
chosen a priori and does not change during the parameter adaptation. In the
opposite, Growing SOM have no pre-defined structure which is generated by
successive addition (and possibly deletion ) of nodes and/or connections.

Static Self-organizing Map : The Kohonen’s Self-Organizing Feature Map
(SOFM) [7] method considers an hyper-rectangular structure on the graph.
Adaptation steps as described above are performed with:

ε(t)hc,ci =
{

f(t) if c ∈ Nc1(t)
0 otherwise (3)

where 0 ≤ f(t) ≥ 1 is a decreasing monotonous function and:

Nc1(t) = {c ∈ A/there is a path between c1 and c that is smaller than Rc1(t)}
Rc1(t) is a decreasing integer function. the decreasing behavior of both function
f and neighborhood area of the winning unit during learning, makes it possible
to coarsely explore the input space at the beginning of the training process, and
to carry out a refinement of the unit position in the final phase.

Self-organizing Map generated by a constructive process : The Growing Cell
Structures (GCS) model [8] has a structure consisting of Hypertetrahedrons
with a dimensionality chosen in advance. A k-dimensional hypertetrahedron is
a k-polyhedron having only k + 1 vertices. For examples, k is respectively to 1,
2 and 3 for lines, triangles and tetrahedrons. The model is initialized with one
hypertetrahedron. Adaptation steps as described above are performed with:

ε(t)hc,ci =




εb if c = ci

εn if there is an edge between c and ci

0 otherwise
(4)



At each adaptation step local error information is accumulated at the winning
unit c1.

∆Ec1 = ‖wc1 − ξ‖ 2

After a given number λ of these adaptation steps, unit q with the maximum ac-
cumulated error is determined and a new unit is inserted by splitting the longest
edge emanating from q. Moreover, additional edges are inserted in order to have
a structure with hypertetrahedrons. The GCS model has a fixed dimensionality,
so it realizes a dimensionality-reducing mapping from the input space into a
k-dimensional space. This can be used for data visualisation.

The Growing Neural Gas (GNG) model [6] does not impose any explicit
constraints on the graph topology. The graph is generated and continuously up-
dated by competitive Hebbian Learning [9]. The adaptation of reference vectors
is identical in GNG and in GCS. After a fixed number λ of adaptation steps,
unit q with the maximum error is determined and a new unit is inserted be-
tween q and its neighbor p in the graph which has the maximum error. Error
variables of q and p are re-distributed with the new unit. The topology of a
GNG network reflects the topology of the input data distribution and can have
different dimensionalities in different parts of the input space. For this reason a
visualization is only possible for low-dimensional input data.

3 Incremental Growing Neural Gas

In the same way of the Growing Neural Gas model, our approach does not
impose any explicit constraint on the graph which is generated and continuously
updated by Competitive Hebbian Learning [9]. On the contrary to the network
previously described, two kind of neurons are distinguished in our approach:
mature neurons, and embryos neurons.

In addition, connections or edges between neurons are created dynamically
during learning following the principles of the CHL algorithm. And both neurons
and edges are associated to an age which is set to zero when created and updated
during learning. When a new neuron is inserted, it is an embryo neuron and its
age is set to zero.

Initially, the graph is empty. At each iteration, we search the winning unit
following (eq. 1). Then, like in the Adaptive Resonance Theory (ART), we
perform the vigilance test of eq. 5 in order to decide if the winning unit is close
enough to the input signal.

dist(ξ, wc) ≤ σ (5)

If the graph is empty, or the winning unit does not satisfy the vigilance test, we
add a new embryo neuron with wnew = ξ and the iteration is finished. This case
is shown in figure 3 a) and b). Figure 3(a) illustrates an IGNG network with new
data which have to be learned (in dimension 2). This data is too far from the
winning unit, so a new embryo neuron (fig 3(b)) is created. The reference vector



(a) A new train-
ing sample

(b) creation of a
new neuron

(c) A new train-
ing sample

(d) creation of a
new neuron

of this new unit is the position of the data in the input space. If the vigilance
test is satisfied for the winning unit, we perform it to the second-nearest unit.
If there is only one unit in the graph, or the test is not satisfied for the second
nearest unit, a new embryo neuron is added with wnew = ξ. Figure 3 c) and
d) shows this case. In this figure the new data satisfy the vigilance test with
its winning unit, but it is too far from the second-nearest neuron, so we create
a new neuron embryo which is connected to the winning unit (fig 3(d)). The
reference vector of the new unit is the position of the data in the input space.

When the two nearest units satisfy the vigilance test, the reference vector of
the units are adapted as in equations 2 and 4.

The learning algorithm is then continued throughout adaptation of both
neurons and edges. If the connection between the two nearest units does not
exist, an edge is created. Otherwise, the age of this edge is set to zero. On
the other hand, the age of all other edges connected to the winning unit is
incremented. Afterward, we remove edges with an age larger than amax, and if
this leads to an isolated mature neurons (without connections), we remove them
as well.

Then, we increment the age of all direct neighbor neurons of the winning
unit. Consequently, if a giving embryo neuron has an age larger than amature,
this unit becomes a mature neuron. The final graph is only constituted of mature
neurons, embryos neurons are useful only for the training.
This process is detailed in algorithm 1.

4 Experimental results

In this section, we will report some experimental results to demonstrate the gen-
eral behavior and performances of our model. For data visualization, a synthetic
problem with low-dimensional input data, which allows to show the limits of the
GNG model in incremental learning, is used.

Handwritten Digit Recognition : In order to validate our model for high-dimensional
problems, we report some results obtained for the handwriting digit recognition
problem over the NIST database 3. The feature vector considered is constituted
by the 85 (1+4+16+64) gray levels of a 4-level-resolution pyramid [10]. In this



experiment, neurons are labeled for a classification task. A simply majority vote
rule (in the supervised meaning) of the learning data that have activated each
neuron during the training process is used for this. Two subsets of the NIST
database of respectively 2626 for training and 2619 other digits for testing are
used in this experiment. This experiment is made to compare our approach
to the GNG model and LVQ approach for a classification problem. The three
network are compared using a NIST database portion described below. A learn-
ing cycle corresponds to a presentation of all the training database samples to
the network. For incremental learning, the used portion of the NIST database
has been split in four parts. Each model has been trained then on one part
after another . Table 1 shows that our approach performs a faster learning (5

Cycles λ εb εn σ am Units offline incr
LVQ 50 - - - - - 330 89.65% -
GNG 50 400 0.1 0.006 - - 330+0 91.44% 81.29
IGNG 10 - 0.01 0.002 2.7 450 313+9 91.71% 90.18%

Table 1: Recognition rate of the three networks in the portion of the NIST
database

times less) than the GNG network for a comparable accuracy, and with a little
less number of neurons. Note that in this experiment, 9 embryo neurons are
generated during the learning.

A synthetics Problem : The synthetic problem we consider here is composed of
two classes. The first class has a spherical distribution, while the second one has
a cubic shape. The network was first trained with the spherical class. Then, to
produce incremental learning, a data subset with only samples from the second
class was presented to the trained network.
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Figure 1: GNG (a) and IGNG (b) behavior in incremental learning

Fig.1 shows the result obtained with the GNG model. On this figure, we
can observe the loss of the learned topology with the GNG model reflecting
an important distortion of the previously learned class. Such a phenomena is
avoided with our approach which allows a good behavior concerning the dilemma
stability/plasticity in an incremental learning context.



5 Conclusion

The ”Incremental Growing Neural Gas” network presented in this paper is able
to make explicit the important topological relations in a given distribution P (ξ)
of input signals. An advantage over other classical models is the stability of
our network in incremental learning. Experiments carried out for low and high-
dimensional problems demonstrate this stability. These results support the con-
clusion that this contribution can be considered as a response of the well known
dilemma plasticity/stability in machine learning field.

Possible applications of our model are data visualization (only in low-dimensional
input space), clustering and supervised learning (in the same way that LVQ).

Another promising way and future developments of this approach concern
its combination with several supervised classifiers allowing the design of an in-
cremental supervised decision system. Good and promising results have been
already obtained in [11] with a multi-classifiers system which is managed by an
IGNG network.
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