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Abstract. ‘Sparse coding’ is a ubiquitous strategy employed in the sensory 
information processing system of mammals. Some work has focused on the 
validation of this strategy through finding the sparse component of sensory input，
and then illustrating a fact that the resulting basis functions or corresponding filter 
response have the visually similar receptive field to those found in primary visual 
cortex (V1). In this review, we show that several newly proposed systems in the 
area of image processing and nonlinear approximation provide new evidences for 
the ‘sparse coding’ strategy along a contrary line. Inspired by the property of 
receptive field of neuron in V1, the bases functions of these systems are 
constructed with special structures, namely, band-pass, being localized and multi-
orientation. Interestingly, these systems can sparsely represent the special classes 
of images dominated with edges. 

1 Introduction 

Understanding the mechanism of brain to process sensory information in mammals is 
a primary but challenging goal of neuroscience. 

1.1 ‘Sparse coding’ strategy in sensory information processing system 

Some researches indicated that there exists a ubiquitous strategy employed in the 
sensory information processing system of mammals. This strategy, referred to as 
‘sparse coding’, represents information only using a relatively small number of 
simultaneously active neurons out of a large population [1]. In 1954, Attneave 
hypothesized that the goal of visual perception is to produce an efficient 
representation of the incoming signal [2]; In 1961, Barlow suggested that the neurons 
involved in sensory information processing should encode as much information as 
possible in order to most effectively utilize the available computing resource [3]. 
Early work on associative memory models also shown that sparse representations are 
most effective for storing patterns, as they maximize memory capacity because of the 
fact that there are fewer collisions between patterns [4]. Later work has similarly 
showed that sparse representations would be advantageous for learning associations in 
neural networks, as they enable associations to be formed effectively using local 
learning rules, such as Hebbian learning [5]. 

  



1.2 Evidences for ‘sparse coding’ strategy: the receptive field of 
learning basis function derived using sparseness criterion resemble those 
of neurons in V1 

The spatial receptive fields of neurons in mammalian striate cortex have been 
reasonably well described physiologically and can be characterized as being localized, 
oriented, and band-pass [6] and hence well suited to the structure of images that falls 
upon the retina when viewing the natural world [1]. It is such special structure that 
makes the ‘sparse coding’ possible. 

Some work dedicated to the validation of the ‘sparse coding’ strategy and 
showed that when the receptive fields of an entire population of neurons are 
optimized to produce sparse representations, the set of receptive fields that emerge 
resemble those of neurons in V1. These work, with the purpose to find the sparse 
representation of natural images, as well known to researcher in neuroscience, is 
viewed as evidences of the ‘sparse coding’ strategy employed in the sensory system in 
mammals. In these work, the key finding was obtained by Olshausen and Field [7]. 
They created a model of images based on a linear superposition of basis functions and 
adapted these functions so as to maximize the sparsity of the representation while 
preserving information in the images. The set of functions that emerges after training 
on hundreds of thousands of image patches randomly extracted from natural scenes, 
starting from completely random initial conditions, strongly resemble the spatial 
receptive field properties of neurons in V1, i.e. they are spatially localized, oriented, 
and band-pass in different spatial frequency bands. Example basis functions derived 
using sparseness criterion in [7] are shown in Fig.1. In addition, Hateren and Schaaf 
compared properties of the receptive fields of neurons in macaque cortex with the 
properties of independent component filters generated by independent component 
analysis (ICA) on a large set of natural images. Their results showed that the two 
kinds of receptive field properties match well, according to the histograms of spatial 
frequency bandwidth, orientation tuning bandwidth, aspect ratio and length of the 
receptive fields [8]. Hateren and Ruderman showed that performing independent 
component analysis (ICA) on video sequences of natural scenes produces results with 
qualitatively similar spatio-temporal properties [9]. In [10], Hyvarinen and Hoyer 
demonstrated that the principle of independence maximization, which is similar with 
that used in Olshausen and Field’s experiment in [7], could explain the emergence of 
phase- and shift-invariant features, similar to those found in complex cells. 

 
Fig. 1: Example basis functions derived using sparseness criterion in [7] 

  



2 New evidence for ‘sparse coding’ strategy: new systems having 
basis functions with similar structure to receptive field of neurons 
in V1 can provide sparse representation for some special classes of 
images  

Mathematically, the question to what degree a transform can efficiently represent 
signals or functions can be quantitatively characterized using the theory of nonlinear 
approximation. The higher the nonlinear approximation ability is, the less transform 
coefficients are needed to represent a signal within a given error level. The error level, 
in the theory of nonlinear approximation, commonly expressed as 2[ ] MM f fε = − , 
here Mf  denotes the reconstruction using the m-term transform coefficients with 
largest amplitude. To some degree, the sparse representation of a transform to signals 
or functions, roughly, is the same as the ‘sparse coding’ strategy employed in V1 
when one consider that V1 functions as if it takes a transform that maps the sensory 
input into the combination of states of neurons: active or not. Hence, it is not 
surprising that the advances in the theory of nonlinear approximation should shed 
light on the understanding the mechanism of sensory information processing system.  

Wavelet analysis has achieved tremendous success in many fields of 
contemporary science and technology, especially in signal and image processing 
application. The success of wavelet mainly arises from its optimal nonlinear 
approximation ability to broad function classes, for example, functions smooth away 
from point singularity. In neuroscience, it is well known that there were claims that 
the human visual system acted, in early stages, by wavelet analysis [11]. 
Unfortunately, from the nonlinear approximation viewpoint, the 2-D separable 
wavelet analysis cannot provide sparse representation for bivariate functions with 
straight or curved singularity (corresponding to those images with straight and curved 
edges). The sensory system has long been assumed that neurons are adapted, at 
evolutionary, developmental, and behavioral timescales, to the signals to which they 
are exposed. Some work has shown that it is the edges that dominate the scenes 
human senses [12]. As a result, we suggest that wavelet be not an accurate enough 
and ultimate model to describe the function of neurons in V1.  

As shown in Fig.2, the basis functions of 2-D separable wavelet system are 
‘isotropic’, hence only have few orientations. The support of wavelet basis functions 
is multi-resolution, being localized but has not multi-orientation, which is obviously 
different from the receptive field of neurons in V1. It is the shortness of orientation 
selectiveness that makes the nonlinear approximation ability of 2-D separable wavelet 
system is contaminated by straight and curvilinear singularity contained in functions. 
In other words, wavelet cannot provide sparse representation for images with straight 
and curved edges. Precisely, let 2x R∈ , 0 [0, 2 )θ π∈ , and we consider function of the 
form 2 2
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nonlinear approximation of wavelet to g is 2 1( ),W
Mf f O M M−− →∞∼ , which is far from 

the optimal nonlinear approximation rate. 
Recently, several new systems for function analysis and image processing have 

  



been proposed that provide more orientation selectiveness than separable wavelet 
system hence can efficiently deal with straight and curved edges in images. 

     
Fig. 2: Example basis functions of 2-D separable wavelet, from left to right: the 

scale varies from coarse to fine 

In [13], Candès developed a new system, ridgelet analysis, and showed how they 
can be applied to solve important problems such as constructing neural networks, 
approximating and estimating multivariate functions by linear combinations of ridge 
functions. In a following paper [14], Donoho constructed orthonormal ridgelet, which 
provide an orthonormal basis for 2 2( )L R . In paper [15], it was shown that both ridgelet 
analysis and orthonormal ridgelet are optimal to represent functions that are smooth 
away from straight singularity. For example, for the function mentioned above, g , the 
number of orthonormal ridgelet coefficients with amplitude exceeding 1

M  grows 

with M more slowly than any fractional power of M, namely, 1#{ | | } ( )R R sO MMλ λα α −> ∼  

for s Z +∀ ∈ , where R
λα  is the orthonormal ridgelet expansion coefficient of g  with 

index λ . By comparison, when decomposing function g  into wavelet series, we only 
have 11#{ | | } ( )W W O MMλ λα α −> ∼ . It is exciting that the much higher approximation rate 
of g  is achieved by orthonormal ridgelet. In fact, orthonormal ridgelet can optimally 
represent functions smooth away from straight singularity in the sense that nor 
orthonormal system achieves higher approximation rate. The key idea of orthonormal 
ridgelet is that it first transforms the straight singularity in spatial domain into point 
singularity in Radon domain, then deal with the resulting point singularity using 
wavelet system. As a result, in effect, it has ‘anisotropic’ basis functions as shown in 
Fig.3. As a generalization version of orthonormal ridgelet, ridgelet frame and dual 
ridgelet frame was proposed in paper [16][17], both of which also can effectively deal 
with straight edges in images. Though the multi-resolution and localization property, 
rigorously, are not introduced into these systems, they can provide the sparsest 
representation for images with straight edges yet. We suggest that the multi-
orientation property, maybe, plays a more important role than others, i.e. band-pass 
and localization property, in the ‘sparse coding’ strategy in V1, considering that edges 
are dominating features in natural images. 

Curvelet, which was derived from ridgelet analysis and can efficiently deal with 
smooth images with smooth edges, is a kind of multi-resolution representation with 
several features that set it apart from existing representations such as wavelets, 
multiwavelet, steerable pyramids, and so on [18]. Besides band-pass and localized, 
the basis functions exhibit very high direction sensitivity and are highly anisotropic, 
as shown in Fig.4. 

  



    
Fig. 3: From left to right: example basis function of ridgelet analysis, 

orthonormal ridgelet and ridgelet frame 

   
Fig. 4: Example basis functions of Curvelet (the first two) and Countourlet (the 

last one) 

Suppose we have an object supported in which has a discontinuity across a 
nice curve Γ , and is otherwise smooth. The error of m-term nonlinear approximation 
using curvelet can achieve the nearly optimal approximation 
rate:

2[0,1]

2C ∼ 2( (log )),Mf f O M M M−− →∞ . Whereas using a wavelet representation, the error 

of n-term nonlinear approximation only satisfies 2 1( ),W
Mf f O M M−− →∞∼ .  

Minh N. Do and Vetterli developed a new ‘true’ two-dimensional representation 
for images that can capture the intrinsic geometrical structure of pictorial information 
[19]. The new system, called countourlet transform, is implemented using a double 
filter bank structure—pyramidal directional filter bank, which combined the 
Laplacian pyramid with a directional filter bank. The countourlet transform provides a 
flexible multi-resolution, local and directional expansion for images. Several basis 
functions of countourlet transform are shown in Fig.4. The countourlet transform also 
provides a sparse representation for bivariate piecewise smooth signals, namely, in 
such case, the error of m-term nonlinear approximation using countourlet can achieve 
the nearly optimal approximation rate: 2 2 3( (log )),C

Mf f O M M M−− →∞∼ . 

3 Discussion 

In this review, we have shown that several newly-proposed function analysis or image 
representation systems, whose basis functions imitated the response properties of 
neurons in V1, namely, band-pass (multi-resolution), localized and multi-orientation, 
interestingly, can provide sparse representation for some special classes of images 
dominated by edges. We believe that they are better models for functions of V1 than 
wavelet analysis and can be viewed as a new kind of evidences for the ‘sparse coding’ 
strategy along a line contrary to earlier work focused on this issue. 
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