
Adaptive Simultaneous Perturbation Based
Pruning Algorithm for Neural Control Systems

Jie Ni and Qing Song

School of Electrical and Electronic Engineering
Nanyang Technological University

Nanyang Avenue, Singapore 639798

Abstract. It is normally difficult to determine the optimal size of neu-
ral networks, particularly, in the sequential training applications such as
online control. In this paper, a novel training and pruning algorithm,
Adaptive Simultaneous Perturbation Based Pruning Algorithm (ASPBP),
is proposed for the online tuning and pruning the neural tracking control
system. The conic sector theory is introduced in the design of this robust
neural control system, which aims at providing guaranteed boundedness
for both the input-output signals and the weights of the neural network.

1 Introduction

Recently, there have been extensive research and significant progress in the area
of robust discrete time neural controller designed for nonlinear system with the
specific nonlinear functions [1, 2]. However, when a neural system is used to
handle unlimited examples, including training data and testing data, an impor-
tant issue is how well it generalizes to patterns of the testing data, which is
known as generalization ability. In this paper, Adaptive Simultaneous Perturba-
tion Based Pruning (ASPBP) algorithm for a generic neural control systems is
proposed and a general stability proof for the neural control system is derived.
The improved performance of the proposed algorithm can be described in terms
of better generalization ability, preventing weight shifting, fast convergence and
robustness against system disturbance.

2 NN Tracking Controller and ASPBP Training Algorithm

2.1 Design of the Controller

A dynamic control system can be presented at an input-output form as the
following:

yk = fk−1 + uk−1 + εk + δk (1)

where fk−1 ∈ Rm is a dynamic nonlinear function, εk ∈ Rm denotes the system
noise vector and δk refers to the artificial error increment caused by pruning,
uk−1 ∈ Rm is the control signal vector. The tracking error of the control system
can be defined as

sk = yk − dk (2)

where dk ∈ Rm is the command signal.



Define the control signal as

uk−1 = −f̂k−1 + dk + kvsk−1 (3)

where kv is the gain parameter of the fixed controller and f̂k−1 is the estimate
of the nonlinear function fk−1 by the neural network. Then the error vector can
be presented as

ek = fk−1 − f̂k−1 + εk + δk (4)

to train the neural network as shown in Figure 1

Fig. 1: Structure of the control scheme

The estimation error can be obtained using the closed-loop relationship (1),
(3) and (4)

ek = (1 − z−1kv)sk (5)

2.2 Basic Form of ASP Algorithm

The output of a three-layer neural network can be presented as:

f̂k−1 = H(θ̂w
k−1, xk−1)θ̂v

k−1 (6)

where the input vector xk−1 ∈ Rni of the neural network is

xk−1 = [yT
k−1, y

T
k−2, . . . , u

T
k−2, u

T
k−3 . . . ]T (7)

θ̂v
k−1 ∈ Rpv is the weight vector of the output layer, and θ̂w

k−1 ∈ Rpw is the weight
vector of the hidden layer of the neural network and H(θ̂w

k−1, xk−1) ∈ Rm×Pv is
the nonlinear activation function matrix with hk−1,i is the nonlinear activation
function

hk−1,i = h(xT
k−1θ̂

w
k−1,i) =

1

1 + e−4λxT
k−1θ̂w

k−1,i

(8)

with θ̂w
k−1,i ∈ Rni , θ̂w

k−1 = [θ̂wT
k−1,1, . . . , θ̂

wT
k−1,nh

]T and 4λ > 0, which is the gain
parameter of the threshold function.



The Adaptive Simultaneous Perturbation(ASP) approach [3] is composed of
two parallel recursions: one for the θ and one for the Hessian of the loss function,
L(θ). The two core recursions are, respectively:

θ̂k = θ̂k−1 − ak(H)−1
k Gk(θ̂k−1) (9)

Hk = Mk(Hk−1) (10)

Hk =
k

k + 1
Hk−1 +

1
k + 1

Ĥk (11)

where ak is a nonnegative scalar gain coefficient, Gk(θ̂k−1) is the input infor-
mation related to the gradient or the gradient approximation. Mk is a mapping
designed to cope with possible non-positive definiteness of Hk, and Ĥk is a
per-iteration estimation of the Hessian matrix.

2.3 Hessian Based Pruning

The main idea of this approach is to choose the minimal saliency [4] caused by
the pruning:

Si =
(θ̂ki)2

2[H−1
i,i ]

(12)

where H−1 is the inverse of the Hessian matrix H, and [H−1
i,i ] is the ii-th element

of the inverse matrix.
So we can define a new term to stand for this error increment(saliency) caused

by the delete of weights of both layers

δk = δw
k + δv

k (13)

δv
k =

{
0 ‖δv

k‖2 > δ
1
2�θ̂v

kH̄v
k (�θ̂v

k)T ‖δv
k‖2 ≤ δ

δw
k =

{
0 ‖δw

k ‖2 > δ
1
2�θ̂w

kiH̄
w
k (�θ̂w

ki)
T ‖δw

k ‖2 ≤ δ

with δ is a bounded positive constant. This term implies that: before doing
pruning, we evaluate the error increment caused by the deletion, if it is less than
some criterion, do the pruning; else, abort pruning.i.e.δk = 0.

In terms of the definition and prerequisite for the pruning, the error increase
‖δk‖2 = ‖δw

k +δv
k‖2 ≤ 2(‖δw

k ‖2+‖δv
k‖2) = 2δ. Thus the instant error increase can

be regarded as an artificial added noise to the system, which can be absorbed
by εk.



2.4 The ASPBP Algorithm

Summary of the ASPBP Algorithm for Neural Controller

Step 1.
Initializing: Form the new input vector xk−1 of the neural network
defined in Eq.(7);
Step 2.
Calculating the output f̂k−1 of the neural network: Use the input
state xk−1 and the existing or initial weights of the network in the
first iteration;
Step 3.
Calculating the control input uk−1 by using uk−1 = −f̂k−1 + dk +
kvsk−1;
Step 4.
Evaluating the estimation error ek by feeding the tracking error signal
sk into a fixed filter;
Step 5.
Calculating the mean squared error of some fixed length: If it is less
than the criteria for pruning ξ(where we assume it reaches a local
minimum), goto step 6; else, go to step 7;
Step 6.
Calculating the error increment caused by the deletion of the specific
weight: If it is less than some constant δ, which is the same criterion
for both layers, do pruning using the iterative Hessian matrix, then
goto step 2; else go to step 7;
Step 7.
Updating the weights for the output layer and hidden layer respec-
tively;
Step 8.
Go back to step 2 to continue the iteration.

3 The Robustness Analysis of the ASPBP Algorithm

We use ‖.‖ to denote the Frobenius norm of a matrix and Euclidean norm of
a vector in this paper. The stability of the input-output neural control system
can be analyzed by the conic sector theory. The main concern is with the
discrete time tracking error signal sk, which is an infinite sequence of real vectors.
Consider, the extended space L2e, in which the variable truncations lie in L2 with

‖s‖2,t = {
t∑

k=1

sT
k sk}1/2 < ∞ (14)

∀t ∈ Z+(the set of positive integer). The conic sector theory and its extension
can be found in [6, 5].



The conic conditions for the output layer can be obtained as:

N∑
k=1

{eT
k Φv

k + eT
k ek

σ̆v

2
} ≥ −(θ̃v

0)2{Mv
k ρ̆v

k

2akpv
} (15)

by selecting a suitable normalized factor ρ̆v
k to obtain the constant number σ̆v

such that

1 > σ̆v ≥ av
k(Mv

k )−1

pv
‖�v

k‖2‖rv
k‖2(ρ̆v

k)−1 (16)

details of which can be found in [7]. The specified normalized factor ρv
k plays

tow important roles. Firstly, it guarantees σv < 1 to avoid the so-called vanished
cone problem [5]; secondly, it guarantees the sector conditions of Theorem 1 to be
simultaneously satisfied by both the original feedback system and the normalized
equivalent feedback system.

From the definition of δv
k , we know that it is bounded too. So this term could

be absorbed by εk as a system noise, which does not make any impact on the
whole system. So we can get the bounded conditions for the pruning of weights
in the output layer by taking exactly the same way to the robustness analysis
for the learning of the output layer.

And similarly, the conic conditions can be obtained for the hidden layer and
the pruning in the hidden layer.

4 Simulation Results

Consider a discrete-time single-link manipulator

y(k + 2) = 2(1− T )y(k + 1) + (2T − 1)y(k) + 10T 2sin(y(k)) + u(k) + d(k) (17)

where y is the tracking position signal, u is the control signal T = 0.002s is the
sampling time, and d is the disturbance generated from a normally distributed
random number with the bound ‖d(k)‖ ≤ dm = 0.2

A three layer feed-forward neural network with 100 hidden neurons is initially
used. Figure(a) shows the output of the plant using the standard ASP algorithm
without pruning using the command signal x2d = sin((π/5)kT and Figure(b)
shows the result by using ASPBP algorithm, in which the overfitting has been
removed.

Weight drifting in Figure(c) is removed by the perturbation in the ASPBP
algorithm as depicted in Figure(d).

5 Conclusion

The ASPBP based pruning method for neural controller has been developed
to obtain the guaranteed stability with improved generalization ability and the
weight drifting problem is also resolved.



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1.5

−1

−0.5

0

0.5

1

1.5

Pl
an

t o
utp

ut 
& 

Re
fer

en
ce

 si
gn

al

T=0.002s

overfitting 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1.5

−1

−0.5

0

0.5

1

1.5

Pl
an

t o
utp

ut 
& 

Re
fer

en
ce

 si
gn

al

T=0.002s 

overfitting after pruning 

(a) (b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

we
igh

t

T=0.002s 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

we
igh

t

T=0.002s 

(c) (d)

References

[1] M.Lee and H.S.Choi, “A Robust Neural controller for Underwater Robot
Manipulators” IEEE Transactions on Neural Networks, Vol.11, pp.1465-
1470, 2000.

[2] H.D.Patino, R.Carelli and B.R.Kuchen, “Neural Networks for Advanced
Control of Robot Manipulators” IEEE Transactions on Neural Networks,
Vol.13, pp.343-354, 2002.

[3] J.C.Spall, “Adaptive Stochastic Approximation by the Simultaneous Per-
turbation Method ” IEEE Trans.On Automatic Control, Vol.45, pp.1839-
1853, 2000.

[4] B.Hassibi and D.G.Stork, “Second-order derivatives for network pruning:
Optimal brain surgeon” Advances in Neural Information Processing Sys-
tems, pp.164-171, 1993.

[5] V.R.Cluett, L.Shah and G.Fisher, “Robustness Analysis of Discrete-Time
Adaptive Control Systems Using Input-Output Stability Theory: a Tuto-
rial” IEE Proceedings, Part D, Vol.135, pp.133-141, 1988.

[6] M.G.Safanov, “Stability and robustness of multivariable feedback systems”
MIT Press, 1980.

[7] J.Ni and Q.Song, “Pruning Radial Basis Function Neural Network for a
Class of Nonlinear Control Systems” revised IEEE Trans.On Sys. Man.
and Cyber., Part B, 2004.


