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Abstract. The Self-Organizing Map is a popular neural network model
for data analysis, for which a wide variety of visualization techniques ex-
ists. We present two novel techniques that take the density of the data into
account. Our methods define graphs resulting from nearest neighbor- and
radius-based distance calculations in data space and show projections of
these graph structures on the map. It can then be observed how relations
between the data are preserved by the projection, yielding interesting in-
sights into the topology of the mapping, and helping to identify outliers
as well as dense regions.

1 Introduction

The Self-Organizing Map [1] is a very popular artificial neural network algorithm
based on unsupervised learning. It provides several beneficial properties, like
vector quantization and topology preserving mapping from a high-dimensional
input space to a usually 2-dimensional map space. This projection can be visu-
alized in numerous ways in order to reveal the characteristics of the input data
or to analyze the quality of the obtained mapping. In this paper, we present
two novel graph-based visualization techniques, which provide an overview of
the cluster structure and uncover topology violations of the mapping. The first
of the methods visualizes a graph structure based on nearest neighbor calcula-
tions, and is especially useful for so-called ”emergent maps” [2], where map units
outnumber data samples. The second method creates a graph structure based
on pairwise distances between data points in input space, and its advantages are
the easy identification of outliers and insight into the density of a region on the
map.

We provide experimental results to illustrate our methods on SOMs trained
on Fisher’s well-known Iris data set. We show the differences between SOMs
with different numbers of map units.

The remainder of this paper is organized as follows. In Section 2 a brief
introduction to related visualization techniques is given. Section 3 details our
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Fig. 1: Iris 6×11 SOM: (a) U-Matrix, (b) P-Matrix, (c) hit histogram, (d) PCA
projection of data and codebook, (e) Iris 30× 40 SOM: Hit histogram

proposed methods, followed by experimental results provided in Section 4. Fi-
nally, some conclusions are drawn in Section 5.

2 Related Work

In this section, we briefly describe visualization concepts related to our novel
methods. The most common ones are component planes and the U-Matrix [2].
For an in-depth discussion, see [3]. The emphasis of our paper lies on visu-
alization techniques that take the distribution of the data set in input space
into account. Most commonly, this is visualized as hit histograms, which dis-
play the number of data points projected to each map node. More advanced
methods are the P-Matrix [4] or Smoothed Data Histograms [5] that visualize
the density of the data in input space. Other techniques providing insight into
the distribution of the data manifold are projection methods like PCA, but for
higher-dimensional input spaces, the quality of the projection rapidly decreases.
Some of the visualization methods are based on graph theoretic concepts like
Voronoi Tesselation or Delaunay Graphs [6]. The methods we propose in this
paper are also related to graph structures and will be discussed in Section 3.

In Figure 1, these visualizations are depicted for SOMs trained on the Iris
data set with 6 × 11 and 30 × 40 map units, respectively. The feature dimen-
sions have been normalized to unit variance. The U-Matrix, P-Matrix and hit
histogram visualizations for the small map (Figures 1(a)–(c)) show a cluster
boundary between the upper third and the lower two thirds of the map. In
Figure 1(d), a PCA projection of both data samples and the map codebook is
depicted. It reveals some very important characteristics of this SOM: The first
three rows of the map are very dense in the vertical direction, which renders the
lines of the map grid barely undistinguishable; slightly below, the interpolat-
ing region clearly divides the two parts of the data samples; and the lower two
thirds of the map grid are highly skewed. However, the dimensionality of the
data manifold is relatively low, and the first two axes of the plot explain more
than 95% of the variance, a quality of projection which is very unlikely to be
observed for larger and higher dimensional data sets. For the large SOM trained
on the Iris data, Figure 1(e) shows the hit histogram. The number of data sam-



ples mapped onto the units is either zero or one. The U-Matrix visualization for
this map is shown in Figures 2(d)–(f) as background images. It reveals vague
cluster borders between the individual data samples’ locations.

Apart from visualization, topology preservation and ordering of the SOM is
a domain with connections to our methods. For a comprehensive overview of
these methods, see [7]. Of particular importance is the SOM Distortion Measure,
which has been shown to be the energy function which the SOM optimizes in
cases of a fixed kernel radius. The connection to our methods, especially the one
that is based on radius calculations, will be discussed in Section 4.

3 Two Graph Projection Methods

In this section, we present two novel visualization methods based on k-nearest
neighbor- and radius-induced graph structures. These can be applied to any
SOM with 2-dimensional map lattice. Our methods define graph structures that
are derived from the data manifold in input space. The projection of these graphs
to the map is then visualized. The presented methods have been implemented
based on the infrastructure provided by the SOM Toolbox1.

The first method we propose is based on nearest neighbor calculation. For
each data sample x, the set Nk(x) of its k nearest neighbors of data points in
input space is determined. Then, the best-matching units (BMUs) of sample x
and its nearest neighbors nj ∈ N(x) are connected visually on the map lattice
by drawing a line between these units. If the number of map units is lower than
the number of data samples, it will often happen that x and some of its k nearest
neighbors are projected to the same map unit, in this case no line is drawn, which
hints at a good projection quality. After all lines have been plotted, a graph-
like structure can be observed that provides deeper insight into the proximity
of the map units’ weigth vectors. The structure revealed by this method does
not necessarily coincide with the neighborhood of the map lattice. Distant map
nodes being connected are an indication of topology violation. The higher the
value of k is chosen, the more lines are plotted. High values of k can be useful to
identify clusters in multimodal distributions where homogeneous areas are fully
connected, while cluster borders are not bridged by lines connecting them. This
visualization technique is most useful for large maps where the number of map
units is much higher than the number of data samples, because more map space
leads to more granular connections.

The second method we propose is visualized in a similar way, but differs in
the decision which data points are to be connected. For each data sample x
the set Srad of samples which lie within a sphere of radius rad with center x is
computed, formally

Srad(x) = {vj |d(x, vj) < rad} (1)

where d is a suitable distance metric, usually Euclidean distance. The BMU of
sample x is then connected with the projections of the data points in Srad(x).
This set may be empty if the parameter rad is either too low, or if x is very

1SOM Toolbox for Matlab: http://www.cis.hut.fi/projects/somtoolbox
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Fig. 2: Iris SOMs, map lattice connected with k-nearest neighbors method; (a)–
(c) 6× 11 map units, (d)–(f) 30× 40 map units, visualized on top of U-Matrix;
(a) k = 1 , (b) k = 3, (c) k = 10, (d) k = 1 , (e) k = 3, (f) k = 10

distant from the rest of the data points. The latter effect is actually desired,
since this allows easy identification of outliers. Dense areas can be identified as
regions where many lines point to.

The graph that is displayed on the map lattice is also related to the single
linkage clustering method [8]. When single linkage is performed, nodes are joined
within a certain distance. Our radius method works similarly, hence, the graph
structure with radius rad reflects the clustering at level rad in single linkage. The
radius method is also related to the P-Matrix visualization technique described
in Section 2, but displays the density of the data manifold by connecting units
with lines instead of color coding of the map lattice.

4 Examples

In this section, we will demonstrate the k-nearest neighbors and radius tech-
niques and compare them to existing visualizations. In Figure 2, the k-nearest
neighbors method is shown for different parameters k and SOMs of different
sizes. For the small map, it can be seen that, especially for k = 1 and k = 3
as depicted in Figures 2(a)–(b), the upper right and lower left corners of the
lower cluster of the map are connected diagonally. This is due to the fact that
these regions are actually very close in input space, which has been shown ear-
lier by the PCA projection in Figure 1(d). In Figure 2(c), no details can be
distinguished anymore, but it shows the two clusters being clearly separated.
The same method is shown for the larger SOM in Figures 2(d)–(f). The nearest
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Fig. 3: Iris SOMs, map lattice connected with radius method; (a)–(c) 6×11 map
units, (d)–(f) 30× 40 map units, visualized on top of U-Matrix; (a) rad = 0.2 ,
(b) rad = 0.4, (c) rad = 0.6, (d) rad = 0.2 , (e) rad = 0.4, (f) rad = 0.6

neighbors of the data samples are of course the same as before, since the data
manifold in input space does not change. However, the shape of the projected
graph is different for individually trained maps of different sizes. For k = 1, small
subgraphs can be observed indicating large proximity in input space. Again, for
k = 10, the upper and lower regions are clearly separated.

The radius method is shown in Figure 3 for both map sizes with radii ranging
from 0.2 to 0.6. Note that the feature dimensions are normalized to unit variance.
There is a number of differences to the former technique: The actual density of
the data manifold is taken into account with the top part of the map being more
tightly connected than the lower two thirds. This is evident for both SOMs in
Figures 3(b) and (e). Also, outliers can be identified as they are not connected
to other map units. This is not so obvious in the nearest neighbors method,
because even outliers have nearest neighbors in input space. This is also the
reason for the connection between the two clusters in Figure 2(c), which is not
present in Figure 3(c). Another difference is that the radius method graph tends
to be composed of more closed geometric figures like triangles than the nearest
neighbor graph, where star-like shapes are more common. This happens, because
the nearest neighbor relation is not symmetric in a mathematical sense, i.e. if a’s
nearest neighbor is b, b’s nearest neighbor is not necessarily a. Contrarily, the
relation induced by the radius method is symmetric, since, if node b is within
a sphere of radius rad around a, then a is also inside the sphere around b of
the same radius. Thus, the nearest neighbor graph is directed, while the radius



graph is undirected.
Experiments comparing our method to topology and ordering measures for

the SOM find that the SOM Distortion Measure, which is minimized during the
training algorithm, is related to our radius method. The Distortion, which can
be computed for each map unit, shows an inverse correlation to the density of
lines pointing to the unit. However, this has been determined empirically, and
further research is required to investigate the relation to this and other quality
measures, such as the Topographic Function and the Topographic Product.

5 Conclusion

In this paper, we have presented two novel methods for visualization of Self-
Organizing Maps that take data samples into account. These techniques can
easily be implemented for 2-dimensional map lattices. The first method de-
fines connectivity as a nearest neighbor relationship, while the second employs a
density-based approach. Our experiments have shown that they are best applied
in combination with other SOM visualization methods, like U-Matrix, P-Matrix,
hit histograms, and projection methods like PCA. We have found the nearest
neighbor approach to be especially useful for maps with a large number of units
compared to the number of data points. The radius method is more reliable
with respect to outliers. Further research is being conducted in application to
larger data sets and will be published in [9].
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