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Abstract. Functional data analysis is a growing research field and nu-
merous works present a generalization of the classical statistical methods
to function classification or regression. In this paper, we focus on the prob-
lem of using Support Vector Machines (SVMs) for curve discrimination.
We recall that important theoretical results for SVMs apply in functional
space and propose simple functional kernels that take advantage of the
nature of the data. Those kernels are illustrated on a spectrometric real
world benchmark.

1 Introduction

In many real-world applications, data should be considered as discretized func-
tions rather than as standard vectors. In these applications, each observation
corresponds to a mapping between some conditions (that might be implicit) and
the observed response. A well studied example of those functional data [1] is
given by spectrometric data (see section 5): each spectrum is a mapping that
associates an response (an absorbance for instance) to a light with a given wave-
length. Other natural examples can be found in meteorological problems (for
instance geographic mappings between coordinates and local weather conditions)
and more generally in multiple time series analysis where each observation is a
complete time series.

The goal of Functional Data Analysis (FDA) is to use in data analysis al-
gorithms the fact that the studied data are discretized functions. Many data
analysis methods have been adapted to functions (see [1] for a comprehensive
review of linear methods).

In the present paper, we adapt Support Vector Machines (SVM, see e.g.
[2, 3]) to functional data classification. The paper is organized as follows. Section
2 presents the Functional Data Analysis and explains why it usually leads to
particular problems, section 3 presents the theoretical SVM for functional data,
section 4 explains what kind of problems involve in practice functional data and
proposes solutions to overcome them and finally, section 5 illustrate the proposed
approach on a real world benchmark.



2 Functional Data Analysis

2.1 Functional Data

To simplify the presentation, this article focuses on functional data for which
each observation is described by one real valued function. Extension to the case
of several real valued functions is straightforward. More formally, if µ denotes
a finite positive Borel measure on R, an observation is an element of L2(µ) the
Hilbert space of square integrable real valued functions defined on R. The inner
product in L2(µ) is denoted 〈., .〉 and is given by 〈f, g〉 =

∫
fgdµ.

Our goal is to classify functional data into predefined classes. We assume
given a learning set, i.e. N examples (x1, y1), . . . , (xN , yN ) which are i.i.d. real-
izations of the random variable pair (X,Y ) where X has values in L2(µ) and Y
in {−1, 1}, i.e. Y is the class label for X which is the functional data.

2.2 Data analysis methods for functional data

Most of the theoretical and practical difficulties in FDA are linked to the fact
that L2(µ) is an infinite dimensional vector space. As a consequence, some
simple problems in R

d become ill-posed in L2(µ), even on a theoretical point of
view.

Let us consider for instance the linear regression model in which a real valued
target variable U is modeled by E(U |X) = H(X) where H is a linear continu-
ous operator defined on the input space (L2(µ) for FDA). When X has values
in R

d, H can be easily estimated thanks to least square methods that lead to
the inversion of the covariance matrix of X. In practice, problems might appear
when d is not small compared to N the number of available examples and reg-
ularization techniques can be used (e.g., ridge regression). When X has values
in a functional space, the problem is ill-posed because the covariance operator
of X is not one-to-one in general and even in particular cases were it is, it has
no continuous inverse (see [4]).

To overcome the infinite dimensional problem, most of FDA methods so far
have been constructed thanks to two general principles: either use representa-
tion methods that allow to work in finite dimension, or introduce regularization
constraints that have comparable dimension reduction effects (see [1]). For ex-
ample, [4] and [5]) develop functional models for linear regression. In the same
way, lot of data analysis algorithms have been successfully adapted to functional
data. This is the case, for instance, of most neural network models ([6, 7, 8, 9]).

3 Support Vector Machines for FDA

3.1 Large Margin Linear discrimination

The most basic SVM is an affine discrimination function with maximal margin.
When the studied data are linearly separable, the parameters (w, b) of the SVM



are obtained by solving the following quadratic programming problem:

(P0) min
w,b

〈w,w〉, subject to yi(〈w, xi〉 + b) ≥ 1, 1 ≤ i ≤ N.

In L2(µ), (P0) has always a solution, as long as input functions are in general
position (i.e., span a N dimensional subspace of L2(µ)). It might seem therefore
that neither soft margin SVM, nor non linear kernel are needed for functional
data. In practice however, it is well known, see e.g. [10], that the solution of
(P0) in high dimensional spaces is not adequate: some regularization is needed
to obtain good generalization. Therefore, (P0) is replaced by its soft margin
version, i.e., by the problem:

(PC) minw,b,ξ〈w,w〉 + C
∑N

i=1 ξi,
subject to yi(〈w, xi〉 + b) ≥ 1 − ξi, 1 ≤ i ≤ N,

ξi ≥ 0, 1 ≤ i ≤ N.

3.2 Theoretical properties

The use of an infinite dimensional space in both problems might seem related
to what is done in general when original data are not linearly separable and are
therefore mapped into a high dimensional feature space by the use of a kernel:
for some of them (e.g., the gaussian RBF kernel), this feature space has an
infinite dimension. But in this case, it is a Reproducing Kernel Hilbert Space
(RKHS) and has therefore some regularity properties.

In the considered setting, the original data space is L2(µ) which is not a
RKHS. Nevertheless, the most important properties of SVM are still satisfied.
First of all, it is possible to replace the optimization problem (PC) by a dual
problem (DC) in which only dot products in the feature space are needed (see
[11]):

(DC) minα

∑N
i=1 αi −

∑N
i=1

∑N
j=1 αiαjyiyj〈xi, xj〉,

subject to
∑N

i=1 αiyi = 0,
0 ≤ αi ≤ C, 1 ≤ i ≤ N.

The advantage of using (DC) rather than (PC) is obvious: the former is solved
in R

N , whereas the latter is solved in L2(µ). It is obviously much simpler to
calculate approximate integrals (by quadrature or Monte Carlo methods) than
to implement of constrained optimization in L2(µ). In (DC), it also appears
clearly that the usual dot product of L2(µ) can be replaced by any positive
kernel defined on L2(µ) (see section 4.2 for functional kernels).

Another important theoretical result for SVM is that looking for a large mar-
gin classifier provides good generalization properties for the obtained classifier.
More precisely, the generalization performances of a SVM can be bounded by a
quantity which is related to the margin, to the size of the training set and to the
radius of the smallest ball containing all the training set (see theorem 4.18 in
[3]). A very interesting point of this result is that it applies to any inner space
product and therefore in particular to L2(µ).



4 Functional data in practice

4.1 Observations

In practice, the functions (xi)1≤i≤N are never perfectly known. The best situa-
tion is the one in which d discretization points have been chosen in R, (tk)1≤k≤d

and each function xi is described by a vector of R
d, (xi(t1), . . . , xi(td)). In this

situation, it might be tempting to apply standard data analysis methods on
R

d vectors, but as explained in Section 3.1, this usually leads to bad solutions
because d might be bigger than N and the variables are highly correlated. As
we already said, the use of regularization and of special kernels, which take ad-
vantage of the function structures underline in this R

d vectors, can prevent this
problem.

Furthermore, in some application domains, especially medical ones (e.g.,
[12]), each function is in general badly sampled: the number and the location
of discretization points depend on the function and therefore a simple vector
model is not anymore possible. A possible solution consists in constructing a
approximation of xi based on its observation values (thanks to e.g., B-splines)
and then to work with the reconstructed functions (see [1, 9] for details).

4.2 Using the functional nature of the data

In the simplest situation (uniform discretization), data might simply be consid-
ered as vectors in R

d and standard SVM processing of those vectors could be
used. Even in this situation, it is interesting to design functional kernels that
use the functional nature of the data.

As explained in section 3, the linear kernel corresponds to the inner product
in L2(µ) which can be easily implemented or even approximated by the scalar
product in R

d if the discretization is uniform. The Gaussian kernel is based on
the euclidean norm in the data space and therefore also applies to functional
data, again thanks to an approximate calculation of distances in L2(µ). In fact
every kernel that is defined using the Hilbert structure of R

d can be readily
implemented in L2(µ), either directly because the discretization is uniform or
thanks to function approximation method.

Another way to define functional kernel is to use a functional pre-processing
combined with a standard kernel. An interesting possibility is offered by deriva-
tion operators if the considered functions are smooth enough (in some cases,
the corresponding functional space is a RKHS). Using an adapted function ap-
proximation method (such as a B-spline expansion), an estimation of x(q), the
q-th derivative of x, can be obtained (even if the discretization is not uniform).
Then any kernel can be used on the derivatives. This method allows to focus on
some particular aspects of the underlying functions, such as the curvature for
the second derivative. It is well known that in some application domain such as
spectrometry, such kind of features might be more interesting than the original
curves.



5 Application

We study in this section spectrometric data from food industry1. Each observa-
tion is the near infrared absorbance spectrum of a meat sample (finely chopped),
recorded on a Tecator Infratec Food and Feed Analyser (we have 215 spectra).
More precisely, an observation consists in a 100 channel spectrum of absorbances
in the wavelength range 850–1050 nm (see figure 1). The classification problem
consists in separating meat samples with a high fat content (more than 20%)
from samples with a low fat content (less than 20%). The data set is split into
120 spectra for learning and 95 spectra for testing. Meta-parameters (C for the
soft margin and σ for the Gaussian kernel) of the SVMs have been determined
by a 10-fold cross validation procedure.
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Fig. 1: Spectra for both classes

The problem is used to compare standard kernels (linear and Gaussian ker-
nels) to a derivative based kernel. It appears on figure 1 that high fat content
spectra have sometimes two local maximum rather than one: we have therefore
decided to focus on the curvature of the spectra, i.e., to use the second derivative.

The following table gives the performances of the considered methods :

Kernel Learning set error rate Test set error rate
Linear 0.83% 2.11%
Gaussian 0% 4.21%
Linear on second derivatives 0% 0%
Gaussian on second derivatives 0.83% 1.05%

The results show that the problem is not very difficult as the worst perfor-
mances (4.21%) corresponds to 4 misclassified spectra among 95. Nevertheless,
it also appears that a functional transformation improves the results. The rela-
tively bad performances of the Gaussian kernel on plain data can be explained
by the fact that a direct comparison of spectra based on their L2(µ) norm is in
general dominated by the mean value of those spectra which is not a good feature
for classification in spectrometric problems. The linear kernel is less sensitive
to this problem. In both cases, the use of a functional kernel introduces expert
knowledge (i.e., curvature is a good feature for some spectrometric problems)
allows to overcome most of the limitation of the original kernel.

1available on statlib: http://lib.stat.cmu.edu/datasets/tecator



6 Conclusion

Support Vector Machines use frequently kernels that correspond to mapping
original data in an infinite dimensional vector space. While these vector spaces
have specific regularity properties, the most important properties of SVM (the
dual formulation of the optimization problem and the link between large mar-
gin and good generalization performances) are still valid in standard functional
spaces. In Functional Data Analysis, observations already live in a functional
space and therefore a plain linear kernel (i.e., the inner product of the func-
tional space) is enough in theory to classify functional data if they are in general
position. In practice however, the use of adapted kernels is important to ob-
tain good performances. We have shown for instance on real world data that
functional transformations such as derivative calculation can improve the qual-
ity of classification by allowing the SVM to use more adapted features. The
performances obtained are similar to the one reported in [8] and obtained in
comparable experimental settings. In [8] classification was made thanks to a
multi-layer perceptron that necessitates an order of magnitude more training
time than the SVM used in the present paper. SVM appears therefore as a very
competitive tool for function classification.
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