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Abstract. The exponential stability of continuous-time Hopfield neu-
ral networks is not preserved when implemented on digital computers by
means of explicit numerical methods, whereas the implicit (or backward)
Euler method preserves this exponential stability under exactly the same
sufficient conditions as those previously obtained for the continuous model.
The proof is based on the nonlinear measure approach, here extended to
discrete-time systems. This approach also allows the estimation of the
exponential convergence rate of the discrete solutions.

1 Introduction

The application of Hopfield neural networks to both associative memories and
the solution of combinatorial optimization problems requires the estimation of
the stability of their equilibrium points, the size of their basins of attraction,
and the corresponding convergence rates. There is considerable interest in the
determination of sufficient conditions that assure the exponential, absolute or
asymptotic stability of neural networks, both globally and locally (see Ref. [1]
and references there in). The standard technique for stability analysis is based on
the use of Lyapunov functions and requires some conditions on both monotonic-
ity and differentiability of the transfer functions. Recently, a new approach based
on nonlinear measures has been introduced with considerable success [2, 3, 4].
This new technique has been only applied to continuous-time neural networks
and only requires the Lipschitz continuity of the transfer functions.

The computer simulation of continuous-time neural networks by means of
numerical methods for differential equations yields (synchronous) discrete-time
neural networks. The standard discretization of the continuous-time Hopfield
neural network is based on the explicit (or forward) Euler method yielding the
Takeda-Goodman model [5]. Usually, the time step used in the simulations is
fixed to unity. This practice introduces instabilities in the synchronous mode,
so some authors recommend an asynchronous implementation, which is more
stable in this case. However, the stability properties of the original continuous-
time model are not preserved by this kind of discretization.

Recently, Atencia et al. [6] have introduced a new discrete-time network
based on the discretization of the Hopfield network by means of the implicit (or
backward) Euler method. This new discrete-time network allows a larger time
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step than explicit Euler discretization and also, for a time step smaller than the
inverse of the one-sided Lipschitz constant of the nonlinearity, possesses exactly
the same Lyapunov function as that of the continuous-time model [6].

In this paper, the stability analysis based on nonlinear measures is extended
to discrete-time systems and applied to the implicit Euler discretization of Hop-
field neural networks, showing that the sufficient conditions which assure both
their global and their local exponential stability are exactly preserved. In Sec-
tion 2, the nonlinear measure stability analysis of the implicit Euler, discrete-
time, dynamical system is presented. 3 is devoted to the application of these
results to Hopfield neural networks. Finally, Section 4 provides some conclusions
and directions of further research.

2 Nonlinear measures and the implicit Euler method

Nonlinear measures are a generalization of matrix norms for nonlinear functions.
Qiao et al. [2] introduced the nonlinear measure associated with the l1-norm, the
one used in this paper, and Ruan et al. [4] the one associated with the l2-norm.

Definition 1. Take an open set Ω ⊂ R
n, an operator F : Ω → R

n, and a fixed
vector x0 ∈ Ω. Qiao et al. [2] define the nonlinear l1-measure of F in Ω as

m1,Ω(F ) = sup
x �=y∈Ω

〈F (x) − F (y), sign(x − y)〉
‖x − y‖1

,

and the relative nonlinear l1-measure of F in Ω at x0 as

m1,Ω(F, x0) = sup
x0 �=x∈Ω

〈F (x) − F (x0), sign(x − x0)〉
‖x − x0‖1

,

where the l1-norm in R
n is defined by ‖x‖1 =

∑
i |xi| = 〈x, sign(x)〉, the sign

function is defined componentwise as sign(x) = (sign(x1), . . . , sign(xn))�, each
component being equal to 1, 0, and −1 for positive, null and negative arguments,
respectively, and 〈·, ·〉 is the Euclidean inner product.

Nonlinear measures can be used to characterize the uniqueness, the stability,
the basin of attraction and the rate of convergence for equilibrium points of
nonlinear systems. In Refs. [2] and [4] only differential equations were considered.
In this paper, we focus on discrete-time nonlinear systems.

Let dx/dt = F (x) be an autonomous system of differential equations, the
discretization of which by the implicit Euler rule yields

xk+1 − xk

∆t
= F (xk+1), (1)

where xk is an approximation to x(tk) ≡ x(k ∆t), and the nonlinear operator is
F : R

n ⊃ Ω −→ R
n. From here on, ∆t = 1, as usual for neural networks.

The key properties of nonlinear measures is that if m1,Ω(F, x∗) < 0, then,
any fixed point x∗ of Eq. (1), i.e., F (x∗) = 0, is unique in Ω (proved in Ref. [2]),



and that m1,Ω(F ) < 0 is sufficient condition for global exponential stability, as
shown in the following theorem.

Theorem 1. If m1,Ω(F ) < 0, then there is at most one fixed point in Ω, and
any two solutions xk and yk, from initial values x0 and y0, respectively, satisfy∥∥xk − yk

∥∥
1
≤ (1 + |m1,Ω(F )|)−k

∥∥x0 − y0
∥∥

1
= e− ln(1+|m1,Ω(F )|) k

∥∥x0 − y0
∥∥

1
.

Proof. Since m1,Ω(F, z) ≤ m1,Ω(F ), and −‖x‖1 ≤ 〈−x, sign(z)〉, ∀z ∈ Ω, then,∥∥xk+1 − yk+1
∥∥

1
− ∥∥xk − yk

∥∥
1

≤ 〈xk+1 − yk+1 − (xk − yk), sign(xk+1 − yk+1)〉
= 〈F (xk+1) − F (yk+1), sign(xk+1 − yk+1)〉
≤ m1,Ω(F )

∥∥xk+1 − yk+1
∥∥

1
,

which finally results in

∥∥xk+1 − yk+1
∥∥

1
≤
∥∥xk − yk

∥∥
1

1 − m1,Ω(F )
≤

∥∥x0 − y0
∥∥

1

(1 + |m1,Ω(F )|)k+1
.

Let F · G be the composition of two operators F and G, i.e., F · G(x) ≡
F (G(x)). Since, if D is a strictly positive diagonal matrix, then, m1,Ω(F ) < 0 if
and only if m1,D(Ω)(F · D−1) < 0, the following theorem immediately follows.

Theorem 2. If m1,D(Ω)(F · D−1) < 0, for a diagonal matrix D with (D)ii =
di > 0, then, any two solutions xk and yk of Eq. (1) satisfy

∥∥xk − yk
∥∥

1
≤

∥∥x0 − y0
∥∥

1(
1 + |m1,D(Ω)(F · D−1)| ‖D‖1

)k , ‖D‖1 = max
1≤i≤n

di.

Proof. From the initial part of the proof of Theorem 1,∥∥xk+1 − yk+1
∥∥

1
− ∥∥xk − yk

∥∥
1

≤ 〈F (xk+1) − F (yk+1), sign(xk+1 − yk+1)〉
= 〈F · D−1(D xk+1) − F · D−1(D yk+1), sign(D xk+1 − D yk+1)〉
≤ m1,D(Ω)(F · D−1)

∥∥D xk+1 − D yk+1
∥∥

1

≤ m1,D(Ω)(F · D−1) ‖D‖1

∥∥xk+1 − yk+1
∥∥

1
.

Local exponential stability follows using the relative nonlinear measure.



Theorem 3. Let x∗ be a fixed point of Eq. (1), and Ω∗ an open l1-ball centered
at x∗. If m1,Ω∗(F, x∗) < 0, then, (1) if x0 ∈ Ω∗, then xk ∈ Ω∗, ∀k > 0, (2) x∗

is exponentially stable with Ω∗ contained in its basin of attraction, and (3) the
following exponential estimate holds for every trajectory∥∥xk − x∗∥∥

1
≤ (1 + |m1,Ω∗(F, x∗)|)−k

∥∥x0 − x∗∥∥
1
.

Corollary 4. Theorem 3 also applies if m1,D(Ω∗)(F ·D−1, D x∗) < 0, with D a
diagonal matrix with (D)ii > 0, with the following decay estimate∥∥xk − x∗∥∥

1
≤ (1 + |m1,D(Ω∗)(F · D−1, D x∗)| ‖D‖1)

−k
∥∥x0 − x∗∥∥

1
.

3 Exponential stability of discrete-time Hopfield networks

The continuous-time Hopfield neural network can be discretized by the implicit
(or backward) Euler method, as introduced by Atencia et al. [6], resulting in

uk+1
i − uk

i

∆t
= Fi(uk+1) = −uk+1

i

Ri
+

n∑
j=1

wij fj(uk+1
j ) + Ii, 1 ≤ i ≤ n, (2)

where uk
i is an approximation to u(tk), tk = k ∆t, ui(t) are the neural voltages,

Ri are the resistances, W = (wij) is the connection weight matrix, fi are the
transfer functions, and Ii are the constant external inputs. Here on, ∆t = 1,
and any fi is one-sided Lipschitz continuous, i.e., there exists mi such that

mi = sup
x �=y∈R

〈fi(x) − fi(y), x − y〉
‖x − y‖2

< ∞.

The next theorem shows that the sufficient condition for global exponential
stability of the solutions of Eq. (2) is exactly the same as the obtained by Qiao
et al. [2] for continuous-time Hopfield neural networks.

Theorem 5. If there exists a set of real numbers di > 0 such that

mj Rj

n∑
i=1

dj

di
|wij | < 1, j = 1, 2, . . . , n, (3)

then, for every set of external inputs Ii, the discrete-time neural network (2) is
globally exponential stable and its solution uk with initial value u0 satisfies∥∥uk − u∗∥∥

1
≤ α exp(− ln(1 + b/(min

i
Ri)) k)

∥∥u0 − u∗∥∥
1
, ∀k > 0, (4)

α =
maxi di

mini di
, b = 1 − max

1≤j≤n

(
mj Rj

n∑
i=1

dj

di
|wij |

)
, 0 < b < 1. (5)



Proof. Let F (x) = (F1(x), . . . , Fn(x))�, x = (x1, . . . , xn)� ∈ R
n and, D and

R−1 be diagonal matrices with (D)ii = di, and (R−1)ii = Ri, respectively. Since

〈D−1 F (D R−1 x) − D−1 F (D R−1 y), sign(x − y)〉

= −
n∑

i=1

|xi − yi| +
n∑

i=1

sign(xi − yi)
di

n∑
j=1

wij (fj(dj Rj xj) − fj(dj Rj yj))

≤ −
n∑

i=1

|xi − yi| +
n∑

j=1

mj dj Rj |xj − yj |
n∑

i=1

|wij |
di

≤ −b ‖x − y‖1 ,

showing that m1,Rn(D−1 F D R−1) ≤ −b < 0. Then, using Theorem 2, the
equation xk+1 − xk = D−1 F (D xk+1), has a unique fixed point x∗ globally
exponential stable with decay estimate

∥∥xk − x∗∥∥
1
≤ (1+b ‖R‖1)

−k
∥∥x0 − x∗∥∥

1
,

where ‖R‖1 = maxi(1/Ri) = 1/(mini Ri). Clearly, the unique solution of this
equation is uk = D xk, whenever uk is that of Eq. (2). Finally, taking into
account that∥∥uk − u∗∥∥

1

‖D‖1

≤ ∥∥D−1(uk − u∗)
∥∥

1
,
∥∥D−1(u0 − u∗)

∥∥
1
≤ ∥∥D−1

∥∥
1

∥∥(u0 − u∗)
∥∥

1
,

‖D‖1 = maxi di, and
∥∥D−1

∥∥
1

= 1/(mini di), the theorem is proved.

Many known global exponential stability criteria published in the literature
can be obtained from Theorems 5 by a proper choice of the adjustable parameters
di appearing in Eq. (3). The following corollary provides some examples.

Corollary 6. Let each transfer function fi of Eq. (2) being differentiable with
0 ≤ f ′

i(x) ≤ βi, ∀x ∈ R, and some βi ∈ R, then, for every set of external inputs
Ii, the discrete-time neural network (2) is globally exponential stable for either
(1) wjj βj Rj + βj Rj

∑n
i�=j |wij | < 1, or (2) wjj βj Rj +

∑n
i�=j βi Ri |wij | < 1, or

(3) wjj βj Rj + βj

∑n
i�=j Ri |wij | < 1, or (4) wjj βj Rj + Rj

∑n
i�=j βi |wij | < 1,

with j = 1, 2, . . . , n, satisfying the exponential decay estimate given by Eq. (4).

Proof. Apply Theorem 5 with fi monotonically increasing, mi ≤ βi, and di = 1,
di = βi Ri, di = Ri, and di = βi, for cases 1), 2), 3), and 4), respectively.

Local exponential stability analysis of discrete-time Hopfield neural networks
can be carried out by using a relative nonlinear measure approach.

Theorem 7. Let u∗ ∈ Ω∗ be a fixed point of Eq. (2), and Ω∗ a l1-ball, if

Rj mj(Ω∗)
n∑

i=1

|wij | < 1, mj(Ω∗) = sup
u∗

j �=x∈Ω∗
j

|fj(x) − fj(u∗
j )|

|x − u∗
j |

,

for j = 1, 2, . . . , n, where Ω∗
i is the projection of Ω∗ on the i-th axis of R

n. Then,
u∗ is exponentially stable and its basin of attraction contains Ω∗. Moreover,∥∥uk − u∗∥∥

1
≤ exp(− ln(1 + b/(min

i
Ri)) k)

∥∥u0 − u∗∥∥
1
, ∀k > 0, (6)



is satisfied by uk, the solution of Eq. (2) with initial value u0, where

b = 1 − max
1≤j≤n

Rj mj(Ω∗)
n∑

i�=j

|wij |.

Proof. Taking F (x) and R−1 as in the proof of Theorem 5, for any x ∈ R(Ω∗),

〈F (R−1 x) − F (R−1 R u∗), sign(x − R u∗)〉 ≤ −b ‖x − R u∗‖1 ,

implying m1,R(Ω∗)(F ·R−1, R u∗) ≤ b < 0. The rest follows from Corollary 4.

This result applies even for nonmonotonic and/or nondifferentiable transfer
functions and could be easily sharpened for both monotonically increasing and
differentiable ones. However, the details are omitted here for brevity.

4 Conclusions

The stability analysis based on nonlinear measures has been extended to discrete-
time nonlinear systems based on the implicit Euler discretization. Sufficient
conditions assuring both the global and the local exponential stability of im-
plicit Euler, discrete-time, Hopfield neural networks have been obtained. These
conditions are exactly the same as those which can be obtained for continuous-
time networks, showing that the implicit Euler method preserves the exponential
stability of the continuous model.

The application of the nonlinear measures approach for the stability anal-
ysis of other discrete-time nonlinear neural networks, such as recurrent back-
propagation, discrete-time Cohen-Grossberg or delayed Hopfield neural networks,
are interesting topics for further research.

References

[1] S. Guo and L. Huang, Exponential stability of discrete-time Hopfield neural networks,
Computers & Mathematics with Applications, 47:1249-1256, Elsevier, 2004.

[2] H. Qiao, J. Peng, and Z.-B. Xu, Nonlinear measures: A new approach to exponential sta-
bility analysis for Hopfield-type neural networks, IEEE Transactions on Neural Networks,
12:360-370, IEEE, 2001.

[3] A. Wan, W. Mao, and C. Zhao, A novel approach to exponential stability analysis of
Cohen-Grossberg neural networks. In F. Yin, J. Wang, and C. Guo, editors, proceedings of
the international symposium of neural networks (ISNN 2004), Lecture Notes in Computer
Science 3173, pages 90-95, Springer-Verlag, 2004.

[4] J. Ruan, E.-G. Gu, and W.-R. Zhao, Nonlinear measures and its application to the chaos
control, Chaos, Solitons & Fractals, 12:219-226, Elsevier, 2004.

[5] M. Takeda and J. W. Goodman, Neural networks for computation: Number representa-
tions and programming complexity, Applied Optics, 25:3033-3046, OSA, 1986.

[6] M. A. Atencia, G. Joya, and F. Sandoval, Continuous-state Hopfield dynamics based on
implicit numerical methods. In J. R. Dorronsoro, editor, proceedings of the international
conference on artificial neural networks (ICANN 2002), Lecture Notes in Computer Sci-
ence 2415, pages 1365-1370, Springer-Verlag, 2002.


