
Applications of
Multi-objective Structure Optimization

Alexander Gepperth and Stefan Roth∗

Institut für Neuroinformatik, Ruhr-Universität Bochum,
Universitätsstraße 150, 44780 Bochum, Germany

Abstract. We present an application of multi-objective evolutionary
optimization of feed-forward neural networks (NN) to two real world prob-
lems, car and face classification. The possibly conflicting requirements on
the NN are speed and classification accuracy, both of which can enhance
the embedding systems as a whole. We compare the results to the outcome
of a greedy optimization heuristic (magnitude-based pruning) coupled with
a multi-objective performance evaluation. For the car classification prob-
lem, magnitude-based pruning yields competitive results, whereas for the
more difficult face classification, we find that the evolutionary approach to
NN design is clearly preferable

1 Introduction

We apply two neural network (NN) optimization methods to two datasets from
real-world classification problems. One method is an evolutionary multi-objective
optimization (MOO) approach (see e.g. [4]), referred to as method (A). In order
to assess the performance of this method, we compare the results to those of the
second, greedy optimization method for NN known as magnitude-based prun-
ing [5]. We evaluate this method, referred to as (B), in a MOO setting on an
optimization problem for car classification which will be termed car task. The
same comparison is performed on an optimization problem for face classification
(denoted face task) [7, 8].

2 The optimization problems

The face and the car task are problems which arise in industrial applications.
For a description and backgrounds of the face task we refer to [8]. The car
task emerges when extending the car detection system described in [1] by a NN
classifier for cars. It operates on pure back or front views of cars and allows for
a more reliable traffic scene representation. The NN is trained on examples of
vehicles and non-vehicles and is applied to all regions of interest (ROI) generated
by an initial detection module with the purpose of rejecting ROI that do not
contain cars.

In both tasks, two possibilities are suggested by application demands: reduc-
ing the classification error could save effort due to better suppression of incorrect

∗email: {Alexander.Gepperth, Stefan.Roth}@neuroinformatik.rub.de. Stefan Roth is for-
merly mentioned in publications under his birth name Stefan Wiegand.

Learning

Learning

1
32

Adaptation
Probability
Operator

+

Selection

Evaluation

...

Objective 1

Objective n

Mutation

Archive

Re−
evaluation

Stopping
Criteria

Copying
Pruning Step

Learning

Reproduction

Initialization

property size(cars) size(faces) positives

Dlearn 5000 3000 50%

Dval 5000 1400 50%

Dtest 5000 2000 50%

Dext 5000 2200 50%

usage Pruning Evolution

Dlearn Learning Learning/Selection

Dval Crossvalidation Crossvalidation/Selection

Dtest Pareto dominace based archiving

Dext Estimation of generalization loss

Fig. 1: Left: Structure of the optimization loop for the hybrid evolutionary
algorithm and the pruning algorithm (black labels). Right: Facts about the
example datasets.

hypotheses, whereas reducing computation time would allow to apply the NN
more times to neighbourhoods of ROI, thereby possibly recognizing objects that
may otherwise have been missed. Of course, it is also conceivable that a compro-
mise between these two requirements (which we expect to be at least partially
conflicting) will give the best overall results; this is our motivation to improve
the NN by MOO.

The two scenarios for MOO (car and face classification) are quite similar: the
NN classifier receives input that is computed from a ROI. It consists of a feature
set, an ordered collection of numbers representing key visual properties of the
ROI (the computation of these properties is significantly different in both tasks).
The network output is a quantity between 0.0 and 1.0, which is interpreted as
a binary decision. In accordance with the procedure in [8], available examples
are partitioned into four datasets termed Dlearn, Dval, Dtest and Dext, see Fig. 1
(right).

In our implementation, the speed of a NN scales linearly with the number of
connections ncon. We measure the classification error CE(D) on some dataset
D. The vector-valued function f(NN) := (ncon(NN),CENN(D)) is minimized.

3 Optimization methods

We investigate two optimization strategies: an evolutionary multi-objective meth-
od and magnitude-based pruning. In multi-objective optimization we approxi-
mate a set of Pareto-optimal trade-offs with respect to a number of simultaneous
objectives and choose suitable solutions from this set after search. Evolution-
ary algorithms constitute established methods for the design of NN architectures
(see [4] and references therein), especially recent evolutionary multi-objective ap-
proaches. The scheme used here might be regarded as a canonical evolutionary
algorithm for network optimization as principally described in [7] using direct

encoding, nested gradient based learning, NSGA-II style selection [2] and online
adaptation of the search strategy.

For both methods, optimization is performed iteratively in T trials, see Fig.1
(left). These constitute independent applications of an algorithm to an initial
population P(t=0) of NN. An iteration t includes reproduction, structure adap-
tation and learning with cross-validation (CV), and in case of (A) subsequent
performance evaluation for selecting the next parental population. Structure
adaptation is subject to the constraint that at least one input neuron of a NN
is connected to the output neuron. A second performance evaluation is used to
update the archive A(t) which represents the outcome of a trial after its comple-
tion at t = tmax. NN learning minimizes the mean squared error MSE(Dlearn)
for 100 epochs regardless of convergence, producing 100 weight configurations.
The learning algorithm is an improved variant of the Rprop algorithm [3]. Model
selection is conducted by CV using MSE(Dlearn)+MSE(Dval). The evolutionary
algorithm of (A) uses (ncon,CE(Dlearn ∪ Dval)) for selecting the next parental
population. In both methods, (ncon,CE(Dtest)) is used for updating A(t). For
a synopsis see Fig. 1 (left).

Due to the requirement of reducing the number of connections instead of
nodes, method (A) differs slightly from the algorithm presented in [7]. We use
different operators for the insertion and deletion of connections: the number of
connections which are inserted or deleted depends linearly on the total amount
of connections in the network (factors of proportionality are 0.05 for the deletion
and 0.01 for the insertion of connections). There is no operator for the deletion
of hidden nodes; this happens only when nodes no longer have any ingoing or
outgoing connections. The operators that add or delete whole receptive fields are
not used in the car task, and operators that jog weights are also omitted. EP-
tournament selection is implemented on the basis of the NSGA-II style ordering
of the population.

Weight elimination in method (B) is applied identically in both tasks: a
percentage p of connections with the largest absolute weight is eliminated at
each iteration. Reproduction simply copies the current population.

4 Multi-objective performance assessment

To compare the multi-objective results produced by two methods, we follow the
procedures summarized in [7]: For each NN, an objective vector z consists of
the qualities computed singly according to all objectives. We do not impose a
straightforward way to compare two arbitrary objective vectors as we could do
e.g. by defining a scalar quality measure since this determines a prior trade-off
between objectives. The space of all objective vectors is referred to as objective
space O; its elements are partially ordered by the dominance relation � (z
dominates z′) defined as

z � z′ ∈ Rn ⇔ ∀ 1 ≤ i ≤ n : zi ≤ z′i ∧ ∃ 1 ≤ j ≤ n : zj < z′j . (1)

The Pareto front of a set M ⊆ O, denoted PM , is then defined as the subset
of elements of M which are not dominated by any other element of M . We

characterize the outcome of an optimization trial by the Pareto front A(t=tmax)

using A(t) := PA(t−1)∪P(t) with A(0) = ∅. A vector z ∈ O dominates a vector
z′ ∈ O weakly (z � z′) iff z is not worse than z′ in all objectives. Given two
sets X and Y, weak dominance of sets (X � Y) is defined as

X � Y iff X �= Y and ∀ y ∈ Y : ∃ x ∈ X : y is weakly dominated by x . (2)

The hypervolume indicator HX [9] measures the percentage of objective space
weakly dominated by X. Other performance indicators measure how likely the
outcome Xi of a trial i is to weakly dominate any outcome Yj of another trial,
or to be incomparable to it. Let V ⊆ O be the smallest cuboid enclosing all
objective vectors and m a measure. Performance indicators are defined as

PXi�Y := | {(Xi, Yj) : Xi � Yj , 1 ≤ j ≤ T} | · 1/T , (3)
PXi||Y := | {(Xi, Yj) : Xi � Yj ∧ Yj � Xi, 1 ≤ j ≤ T} | · 1/T (4)

HX :=
{
m({z ∈ V |∃z′ ∈ X : z′ � z})/m(V)

} ∈ [0, 1]. (5)

In the following, Ai and Bi, 1 ≤ i ≤ T will always be used for trial outcomes using
method (A) and (B) respectively. For the purposes of comparison, we calculate
the quantities HAi

, HBi
, PAi||B, PBi||A, PAi�B and PBi�A, their median and

median absolute deviation (mad).

5 Experimental setup

The following statements hold for methods (A) and (B): All NN have one hidden
layer, activation functions are of logistic sigmoidal type. We simulate T = 10
trials. For each trial we set |P(t=0)| = 25. In the car task, each NN in P(t=0)

is fully connected, has between 20 and 25 neurons in its hidden layer and all
forward-shortcuts and bias connections in place. At each iteration t, P(t) is
initialized with small random weight values between -0.05 and 0.05. We refer
to this architecture as the car reference topology. In the face task, P(t=0) is
instantiated with 25 copies of the 400-52-1 architecture of [6], the face reference
topology, each of which is randomly initialized like the car reference topology at
t = 0.1 All trials of method (B) are performed for 90 iterations at p = 10%.2 All
method (A) trials are performed for 200 iterations.

We train the car and the face reference topologies 100 times for 2000 iterations
using the improved Rprop learning procedure on Dlearn and select the network
aref with the smallest classification error CE(Dval ∪Dtest). In the following, all
results are normalized by the performance of aref .3 For example, the normalized
classification error of a NN a is given by CE′

a(D) = CEa(D)/CEaref
(D) and the

normalized number of connections by n′
con(a) = ncon(a)/ncon(aref).

1For t > 0 the weight values of the predecessor are used for initialization prior to variation.
2No regular NN were ever produced afterwards. Reducing the pruning percentage p to the

point where 200 valid NN iterations could be produced did not change results.
3Keep in mind that the reference topologies are not arbitrary, but tuned extensively by

hand. They produce results that are highly competitive to other approaches in the literature.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6

normalized classification error CE′(Dtest)

n
or

m
al

iz
ed

n
et

w
or

k
si

ze
n
′ co

n evolved classifiers
pruned classifiers

 0

 0.2

 1 2

pareto optimal

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6

normalized classification error CE′(Dtest)

n
or

m
al

iz
ed

n
et

w
or

k
si

ze
n
′ co

n evolved classifiers
pruned classifiers

 0

 0.2

 1 2

pareto optimal

performance median
indicator ±

(i = 1 . . . T) mad
{HAi

} 0.991±0.002
{HBi

} 0.982±0.001
{PAi�B} 0.1±0.15
{PAi||B} 0.9±0.15
{PBi�A} 0.±0.0
{PBi||A} 0.8±0.15

performance median
indicator ±

(i = 1 . . . T) mad
{HAi

} 0.958±0.012
{HBi

} 0.905±0.001
{PAi�B} 0.15±0.222
{PAi||B} 0.85±0.222
{PBi�A} 0.0±0.0
{PBi||A} 0.7±0.148

Fig. 2: Left: results from the car task. Right: results from the face task. Shown
on top are the unions of all trial outcomes; members of their Pareto fronts, called
meta Pareto fronts, are shown in the magnifications. The only pruned NN in
the meta Pareto front of the car task is indicated by an arrow. The performance
indicators (tables at the bottom) are explained in the text.

6 Results

The normalized results of the car and the face task are shown in Fig. 2. One
perceives the surprisingly similar performance of the two methods when applied
to cars. While the evolutionary method performs better, the differences are small
and the errors of the generated NN are similar in similar regimes of ncon. In
contrast, the differences between the two methods are quite pronounced when
applied to the face task: here, the evolutionary MOO is clearly superior. In
both tasks, the distributions of the HAi

and the HBj
differ in a statistically

significant way.4 All results persist when considering (ncon,CE(Dext)) instead
of (ncon,CE(Dtest)), showing that no significant overfitting has occured.

7 Discussion

We interpret the result of the car task as an indication that the problem class
is intrinsically easier5 than the face task. Therefore the simpler optimization
method can yield competitive performance. For the more difficult face task, a

4Wilcoxon Rank Sum Test, p < 0.001
5w.r.t. the magnitude of the classification error of the best conceivable NN.

sophisticated (here: evolutionary) optimization strategy is clearly favorable.
For the support of our interpretation about the difficulty of both tasks, we

observe that the (absolute) error CE(Dtest) of the car reference topology is 3.5
times smaller than CE(Dtest) of the face reference topology. As the results
plainly show, optimization is unable to improve classification accuracy greatly
compared to the reference topologies which constitute approximate optima in
this respect. Therefore this difference in classification errors should be considered
meaningful. Furthermore, optimization in the car task produced NN without
a hidden layer which nevertheless had an (absolute) classification accuracy of
about 80%. We take this as a hint that the problem is almost linearly separable
and therefore can be considered ”easy”.

The embedding of structure optimization within an evolutionary MOO set-
ting leads to a notable advantage compared to the single-objective formulation
of the problem [7, 8]. There, a certain trade-off between partially conflicting
objectives must be determined prior to search, thus disregarding certain types
of solutions. In MOO, the best attainable set of incomparable solutions is gener-
ated first, and choice of specific solutions happens afterwards. We have demon-
strated that simple structure optimization heuristics like pruning can easily be
incorporated in the framework of MOO. While this does not improve the opti-
mization results themselves, one can profit from the advantages of MOO that
were discussed previously.

References

[1] T. Bücher, C. Curio, H. Edelbrunner, C. Igel, D. Kastrup, I. Leefken, G. Lorenz, A. Stein-
hage, and W. von Seelen. Image processing and behaviour planning for intelligent vehicles.
IEEE Transactions on Industrial Electronics, 90(1):62–75, 2003.

[2] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons,
Chichester, UK, 2001.

[3] C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop learning algorithm.
Neurocomputing, 50(C):105–123, 2003.

[4] C. Igel and B. Sendhoff. Evolutionary framework for the construction of diverse hybrid
ensembles. In 13th European Symposium on Artificial Neural Networks (ESANN 2005),
2005.

[5] R. D. Reed and R. J. Marks II. Neural Smithing. MIT Press, 1999.

[6] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(1):23–38, 1998.

[7] S. Wiegand, C. Igel, and U. Handmann. Evolutionary multi-objective optimisation of
neural networks for face detection. International Journal of Computational Intelligence
and Applications, 4(3):237–253, 2004.

[8] S. Wiegand, C. Igel, and U. Handmann. Evolutionary optimization of neural networks for
face detection. In M. Verleysen, editor, 12th European Symposium on Artificial Neural
Networks (ESANN 2004), pages 139–144. Evere, Belgium: d-side publications, 2004.

[9] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. Performance
assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on
Evolutionary Computation, 7(2):117–132, 2003.

