
SVM and Pattern-Enriched Common Fate Graphs for
the Game of Go

Liva Ralaivola1,2,Lin Wu2, Pierre Baldi2

1- Centre de Math́ematique et Informatique, Laboratoire d’Informatique Fondamentale
39, rue F. Joliot Curie, F-13453 Marseille cedex 13, France

2- School of Information and Computer Science, Institute for Genomics and Bioinformatics
University of California Irvine, Irvine, CA 92697-3425, USA

Abstract. We propose a pattern-based approach combined with the concept of
Enriched Common Fate Graph for the problem of classifying Go positions. A
kernel function for weighted graphs to compute the similarity between two board
positions is proposed and used to learn a support vector machine and address the
problem of position evaluation. Numerical simulations are carried out using a set
of human played games and show the relevance of our approach.

1 Introduction

The game of Go, is the board game that poses the most difficult challenges for computer
programmers. The difficulty to build a high-level program comes from the complex na-
ture of the different concepts to take into account: liberties, territory, life and death,
etc. In addition, the branching factor is so large, i.e. roughly between50 and65, in
the middle of a game played on a9 × 9 board, that any search strategy easily becomes
prohibitively expensive. Therefore, the effort toward the construction of a strong Go
program has to be devoted to an accurate evaluation function capable of discriminat-
ing winning and losing positions at any stage of a game. We propose an approach to
this problem which builds on pattern extraction ideas [1] and thecommon fate graph
representation [2].

This paper is organized as follows. We first (section 2) briefly recall the rules of
the game of Go. Then, focusing on boards of size9 × 9, section 3 describes our new
Enriched Common Fate Graph (ECFG) representation of positions and a kernel fea-
ture map for ECFG so kernel methods such as support vector machines can be used to
learn the evaluation function. In section 4, we report results on the effectiveness of our
approach for the classification of positions, showing in particular how the information
provided by the patterns is strongly relevant.

2 Game of Go

Go is a two-player board game played on19 × 19 (official size)9 × 9 (for beginners
and computer programs) and13 × 13 square boards. The goal of both black and white
players is to finish the game with the largestterritory. To do so, Black and White
obey the simplified set of rules: starting with an empty board, Black and White move
alternatively, starting with Black. Each move consists in putting a stone at an empty
intersection of two lines, which may lead to thecapture of one or several opposite

Fig. 1: Locations of the3× 3 patterns. Taking into account all the symmetries and rotations that
leave the strength of a position unchanged, 10 distinct locations must be considered.

stones, when these stones happen to no longer have anyliberties. Liberties correspond
to empty intersections adjacent togroups or chains, defined as sets of stones of the
same color connected through the lines of the board; all the stones of a chain share the
same liberties. When the number of liberties of a chain becomes zero, all the stones of
the chain are captured and removed from the board. A player may pass his turn at any
time and the game is over when both of them do so. The territory owned by a player
corresponds to the number of intersections occupied or surrounded by his stones.

The hardness of building an accurate and reliable evaluation function stems from
the need of balancing the opposing characteristics of a position, namely the spatial
local configurations and the general shape on the one hand, and, on the other hand,
the tactical and the strategical aspects. The following section presents our strategy to
automatically learn a powerful evaluation function from a set of human-played games.

3 Pattern Enrichment of Common Fate Graph

We propose to envision the task of building an evaluation function as a learning prob-
lem, using a setSb = {(b1, y1), . . . , (b�, y�)} of labeled positions where eachbi is
a position (see, e.g., Fig. 2, left) andyi ∈ {win, loss} depends upon whetherbi is a
winning or a losing position for Black. Using a target value related to the outcome of
the game, instead of one that corresponds to an immediate return allows us to put more
emphasis on the strategical aspect of a position. However, given the total number of
configurations of a9×9 board (≈ 1037 if invariances are considered), it is hard to learn
a classifier from a limited set of positions coded as raw boards. To overcome this issue,
we propose the Enriched Common Fate Graph structure, inspired on [2].

3.1 Automatic Pattern Extraction

A common approach used in board game programming is to divide the board in small
areas of interest, to assign values to the configuration of the material, i.e stones, or
patterns, in those small areas and then to combine these values to get a final value for
the whole position. We propose to automatically extract and assign a value to all3 × 3
square patterns, located at different positions, that can be encountered on a9× 9 board
(see Fig. 1). Using a set of games with known outcome and final territory possessions,
we define for each patternp, the values stab(p) and imp(p), computed as:

stab(p) =
bedge(loc(p), p) − wedge(locloss(p), p)

occ(p)
, imp(p) =

win(p) − loss(p)

occ(p)
(1)

where occ(p) is the number of timesp occurs in a position (throughout all the games),
loc(p) the location ofp on the board, bedge(loc(p), p) (resp. wedge(loc(p), p)) the

3 3 3 3

4

3 3 3

3

4

3 3

3333333

3

0

1

5

5

55

5555 5

555

55 5

5

4

42

2

22

2 2 2 2

22 1

2

333

3

33

3

3

3 3

3

2

22

22

22

2

2

1413

12

7

11

10

9

86

-1.0

-0.9+0.0 -0.9

-1.0 -0.5-0.7 -0.5

-0.3-0.7

+0.9

-0.2

+0.7+0.7+1.0

+0.9+0.7

-0.9

+0.5 +0.6

-1.0

-0.9

+0.5

+1.0

-1.0

+0.8 -0.5

-0.8

-1.0

-0.8

-0.9

+0.9

+0.9

+0.9

-0.3

-0.7-0.8-0.7

+0.9

+0.3

+0.0

+0.0

+0.0

+0.0

+0.0

+0.0

+0.0+0.0

+0.0+0.0

+0.0

+0.0

+0.0

+0.0

+0.0

+0.0

+0.0

+0.0

+0.0+0.0 +0.0

+0.3

+0.9+0.7+0.9+0.0 +0.9+1.0

+0.7

-0.8

-0.7

+0.4

+0.0+0.0+0.0+0.0+0.0

+0.0

+0.0

+0.0+0.0

14

11

10

13

6 7 8

9

12

2

3

5

10

4

�����

�����

�����

���������� �����

�����

������

�����

������

�����

�����

�����

�����

��	��

Fig. 2: Left: a position with, at each location, the number of the group an intersection belongs to.
Middle: the weights associated to each location not on the edge of the board as provided by the
pattern database. Right: the Enriched Common Fate Graph corresponding to the position; each
node corresponds to a group/empty location and has a label from Table 1 and a weight obtained
as a function (here, the sum) of the weights of the intersections in the group.

number of times there is a larger territory for black (resp. white) at loc(p) at the end
of the game whenp occurred during the game and, finally, win(p) (resp. win(p)) the
number of timesp occurs in a winning (resp. losing) position for Black. stab(p) is
a value that we callstability and, even though it is computed with respect to the final
result of the game, it can be seen as a tactical feature. On the contrary, imp(p) is a value
that measures theimpact of a pattern toward the outcome of the game.

These values can easily be used to give a weight to each (occupied or unoccupied)
intersection of the board not on the edge as shown on Fig. 2, middle. However, even
if each intersection of a board may now be assigned a value, learning a classifier still
requires a way to both reduce the number of possible board positions and take into
account the crucial property that all the stones of a group share acommon fate, i.e. they
either all live or die. To respond to this need, we consider the Enriched Common Fate
Graph representation.

3.2 Enriched Common Fate Graph

TheCommon Fate Graph (CFG) [2] approach consists in transforming a position into
a node-labeled graph, with the three labelsb (black),w (white) ande (empty), where
eachb or w node corresponds to a black or white chain, respectively, whilee nodes
are empty intersections; an edge between two nodes is present when the corresponding
elements on the board are adjacent. This representation is compact, independent of the
orientation of the board and it uses the common fate idea. However, the information
about the local patterns occurring on the board and the different types of empty squares
is lost. To overcome this, we introduce theEnriched Common Fate Graph (ECFG)
structure, which extends the CFG approach with (a) new labels for empty intersections,
see Table 1, and (b) the assignment of a weight to each node of the graph (Fig. 2, right).

Dealing with the new node labels is rather straightforward given their definitions
(see Table 1) and the same strategy as that used for CFG can be used. As for the
weights, if we consider the stability feature, for instance, the weight wgt(n) of a node

Label Description Example

b, w black or white stone

j empty intersection surrounded by empty intersections

f , g empty intersection surrounded by black stones and
white stones, respectively (cf.eye andfalse-eye)

f 1, f 2, f 3 empty intersection needing 1,2 or 3 black stone(s) to
become of typef

g1, g2, g3 empty intersection needing 1,2 or 3 white stone(s) to
become of typeg

m empty intersection adjacent to another empty inter-
section, a black stone and a white stone

s empty intersection totally surrounded by black and
white stones

Table 1: The labels used for the nodes of Enriched Common Fate Graphs. The last column
represents small patterns centered at intersections having the corresponding label.

n corresponding to the intersections{n1, . . . , nq} is computed as:

wgt(n) = σ

0
@ X

i∈{n1,...,nq}
stab(pi)

1
A (2)

wherepi is the pattern centered at the locationi (cf. Fig. 2, right) andσ a non-
decreasing function.

Like CFG, ECFG is a compact representation that is independent of the rotations
and symmetries of the board and that conveys the importance of the common fate prop-
erty. In addition, it precisely characterizes empty intersections and can encompass the
strength of local features through the weights of the nodes.

3.3 Kernel Feature Map for ECFG

ECFG is a nice representation of board positions for the reasons mentioned previ-
ously and we use it for learning a classifier. To do so, given the set of labeled po-
sitionsSb = {(b1, y1), . . . , (b�, y�)}, we consider the ‘equivalent’ training setS =
{(x1, y1), . . . , (x�, y�)}, wherexi is the ECFG ofbi and we learn a Support Vector
Machine (SVM)[3, 4]; the use of an SVM is motivated by the fact that it is a handy and
powerful classifier as soon as a suitable kernel function is available.

To build kernels for node-weighted labeled graphs, we propose the feature map
φd(x) = (φpath(x))path∈P (d) for a graphx, where, for somed, P (d) is the set of all

possible strings of length up tod obtained by concatenating the labels of Table 1 and

φpath(x) =

8><
>:

0, if path is not the label of any path ofx
1

length(path) · |Qx(path)|
X

t∈Qx(path)

wgt(t)

where length(path) is the length of the stringpath, Qx(path) the set of the paths inx
having the label1 path and wgt(t) the sum of the weights of the nodes in the patht.

Using this feature map, it is easy to derive several kernels such as, for instance the
kernelkd, defined for somed as –xi andxj being two weighted labeled graphs:

kd(xi,xj) = 〈φd(xi), φd(xj)〉 =
X

path∈P (d)

φpath(xi)φpath(xj). (3)

4 Numerical Simulations

We carry out experiments using a set of roughly 3500 games kindly pre-processed and
provided by Nicol N. Schraudolph. We separate the dataset in a training sett̄ of 3150
games and a test sett of 350 games. All the positions of the games are ‘normalized’
(such that two positions that are equal up to a rotation or a symmetry are mapped to the
same position) and, if necessary, the stones are switched so that Black is the next player
to move. The label (win or loss) associated to a position corresponds to the largest
number of black wins/losses this position appears in.

We compute the stability values and impact values for the3 × 3 patterns on̄t ac-
cording to (1) and we use the kernelkd of (3) for d = 1, 2, 3. In order to measure the
improvement due to the use of ECFG, we also consider ECFG representations without
weights – which corresponds to the CFG representation with a wider range of labels.
To compute the weight of a group, we use (2) andσ(x) = (1 + exp(−x))−1 since our
preliminary experiments showed it performs better than the simple identity function.
The SVM implementation we use is SVMlight [4].

We focus on boards having between20 and50 stones – which corresponds to the
most difficult part of the game – and consider the training setst̄20, . . . , t̄50 and testing
setst20, . . . , t50 respectively comprising boards with20, . . . , 50 stones. The values
500, 1000, 2000, 4000 and 8000 are tested for the parameterC of the SVM (see, e.g.
[4] for the meaning ofC) and we retain for each feature (i.e. impact, stability or ‘count’
– the latter corresponds to the kernel used in [2]) and depthd combination the one
that minimizes the average testing error ont̄s−1 andt̄s+1. For each given numbers of
stones, we then estimate the generalization accuracy as the average accuracy measured
on ts−1, ts andts+1.

The results plotted on Fig. 3, middle, correspond to the values of the classification
accuracy averaged on the three different features for the different values ofd. It is
obvious from this graph that larger values ofd lead to better accuracies. This is in
agreement with the intuition that the longer the paths that are extracted from a graph
the more the information on the structure of the graph is preserved. Looking at Fig. 3,

1The label of a path is the string obtained by concatenating the labels of the nodes of the path.

d imp. stab. count

1 62.5 61.9 56.9
2 62.2 63.2 60.5
3 61.7 64.1 64.3 54

 56

 58

 60

 62

 64

 66

 68

 20 25 30 35 40 45 50

A
cc

ur
ac

y
(%

)

#stones

d = 3
d = 2
d = 1

 52

 54

 56

 58

 60

 62

 64

 66

 68

 20 25 30 35 40 45 50

A
cc

ur
ac

y
(%

)

#stones

outcome
stability
count

Fig. 3: Left: averaged generalization accuracies for feature/d combinations (’imp.’ and ’stab.’
stand for impact and stability, respectively. Middle: the test accuracy averaged across the different
features for different values ofd. Right: the test accuracy averaged across the values ofd for the
different features.

right, it clearly appears that the accuracies, when averaged on the different values of
d, give the edge to the ECFG representation with the stability feature. However, it
must be noticed that when the accuracies are not averaged and considered one by one
(Fig. 3, left), the ECFG representation with the count feature andd = 3, provide an
accuracy of64.3%, slightly better than the second best accuracy, obtained by ECFG
with d = 3 and the stability feature which lead to an accuracy of64.1%. We suspect
this is due to an overfitting problem caused by the discrepancy between the richness of
ECFG and the relatively small number of training positions (≈ 3150). Notwithstanding
these counterintuitive results, we see that the classification accuracies achieved on the
test sets are well above the chance level for the well-balanced datasets used.

5 Conclusion

We have proposed the Pattern-Enriched Common Fate Graph representation of Go po-
sitions, which mixes a pattern based approach and a graph-based approach to model
Go positions. Using an SVM we have conducted simulations on a set of human played
games and obtained encouraging results. In the near future, we plan to conduct experi-
ments on larger training sets to avoid the overfitting problem witnessed in some of the
simulations presented here. A gradient descent strategy to learn the feature map and
weight the different patterns is also envisioned.

References

[1] M. Buro. Experiments with Multi-ProbCut and a New High-Quality Evaluation Function for Othello. In
Games in AI Research, 2000.

[2] T. Graepel, M. Goutrie, M. Kr̈uger, and R. Herbrich. Learning on graphs in the game of go. InProc. of
Int. Conf. on Artificial Neural Networks (ICANN-01), Vienna, Austria, 2001.

[3] C. Cortes and V. Vapnik. Support Vector Networks.Machine Learning, 20:1–25, 1995.

[4] T. Joachims. Making Large-Scale Support Vector Machine Learning Practical. In B. Schölkopf,
C. Burges, and A. Smola, editors,Adv. in Kernel Methods – Support Vector Learning, pages 169–184.
MIT Press, Cambridge, MA, 1998.

